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ABSTRACT
In this paper we present an approach to support privacy
in opportunistic sensing. In particular, we use compact and
privacy preserving representations of data (or sketches), that
allow us to compute relevant statistics over data without
disclosing users’ sensitive information (e.g. locations). We
exemplify our approach by referring to the important appli-
cation of noise pollution monitoring. We present preliminary
experimental results showing that sketches can actually be
employed to produce accurate environmental maps, at the
same time preserving users’ privacy.

1. INTRODUCTION
Opportunistic people-centric sensing [12] has been gaining
popularity, with several systems and applications being pro-
posed to leverage users’ mobile devices to collectively mea-
sure environmental data. In such systems, nodes report sen-
sor data through opportunistic network connections, such
as third-party access points. However, people centric sens-
ing generally suffers from privacy related issues, namely the
need to share data provided by users without disclosing any
sensitive information about user’s privacy (e.g., locations).

In this paper we present an approach to support privacy in
opportunistic sensing. In particular we use sketches, namely
compact and privacy preserving representations of data, that
allow us to compute relevant statistics over the data with-
out disclosing users’ sensitive information. The proposed
techniques can be exploited in several application domains
such as environmental monitoring, analysis of social pat-
terns, traffic maps etc. Here we exemplify our approach
referring to the relevant application of noise pollution mon-
itoring.

The Directive 2002/49/EC of the European Parliament has
made the avoidance, prevention, and reduction of environ-
mental noise a primary issue in European policy and the
Commission required Member States to provide accurate
noise pollution maps. Today’s noise measurements are mainly
carried out by designated officers that collect data in a lo-
cation of interest. Even if this assessment procedure is still
compliant with European regulations [9], it often fails to
provide scalable and accurate estimations of the real noise
pollution levels. Nowadays, the applicability of fixed wire-
less sensor networks [10] to wide area long-term monitoring,
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is still limited due to its high installation and maintenance
costs.

2. RELATED WORK
People-centric sensing [7][8] has leveraged the use of human
carried devices (such as smart-phones) to sense information
directly or indirectly related to human activity or environ-
ment, in an opportunistic or participatory way. The Met-
roSense project [14] is working with industry and agencies
to develop new applications, classification techniques, pri-
vacy approaches, and sensing paradigms for mobile phones
enabling a global mobile sensor network capable of societal-
scale sensing. Most related to our reference application, the
NoiseTube [13] project has developed a novel platform for
the monitoring of urban noise pollution, based on mobile
phones. The same approach has been followed by the Nois-
eSpy [11] project in which noise maps are built on the basis
of data coming from users’ devices in a participatory way.
Both these projects require users to agree and share infor-
mations regarding noise levels measurements, together with
their position in order to allow geotagging to an external
system. While both these works demonstrate the feasibil-
ity of the use of smartphones/cellphones as sound meters,
their platforms suffer of a major lack of privacy for involved
users, thus allowing an attacker to trace users’ movements.
Privacy preservation in location based services has already
been addressed by [16, 15]. In [15], accurate traffic speed
maps in a small campus town are build from shared GPS
data of participating vehicles, where the individual vehicles
are allowed to “lie” about their actual location and speed
at all times. In our approach, data are always correct but
represented in a compact and privacy preserving way (i.e
sketches). Differently from [16], where data are available in
clear to the intended receiver, in our work sketches allow
a central authority to select relevant traces to reconstruct
an accurate map, but without revealing to anybody (central
authority included) relevant information on users’ positions.

3. SYSTEM OVERVIEW
Taking inspiration from the NoiseTube [13] set-up, we aim to
leverage user’s smartphones to sample the environment and
provide collected data to a central authority. Nevertheless
contrary to NoiseTube, our solution is based on opportunis-
tic monitoring and explicitly considers privacy preservation
a primary concern to actually encourage users’ participa-
tion. Nowadays mobile phones are personal devices, primar-
ily intended to serve the user with telephony, messaging and
other functionalities. Additional services like noise monitor-



Figure 1: System Overview

ing cannot be considered of primary importance, and thus
people would likely not support them if they will negatively
affect the behavior of the “primary” services. For this rea-
son, we think a mobile phone application should be transpar-
ent and communicate opportunistically whenever users get
connected for their own purposes. This approach strongly
limits the availability of real-time data, because data are
only transmitted whenever a connection is available. How-
ever, for the statistical purposes of the noise monitoring ap-
plication we are discussing here, this is not a major prob-
lem. Instead, we do believe that a mandatory requirement
to achieve a significant users’ participation is the preserva-
tion of their privacy. Sampled data must be geo-referenced
to be of some utility, as a consequence users’ movements
could be easily traced with a serious loss of privacy. Thus, a
privacy preserving representation of data is needed, but at
the same time, operations on sampled data should be still
possible to the central authority, in order to select relevant
samples among the whole amount of received data for each
inquiry. The noise monitoring service we envision, foresees
the participation of three main actors: mobile users, central
authority and system users. Mobile users are responsible
for noise data collection. They participate to the service
by running a noise monitoring application on their phones
(see section 3.1). This application exploits the on board mi-
crophone to sample environmental data while the phone is
idle, so as not to affect phone’s normal usage. Whenever
the user establishes a connection, environmental data are
opportunistically sent to the central authority which is in
charge to elaborate statistics and to answer queries issued
by system users on the average noise level in an area of
interest.

More in detail, we consider n users moving in an area U and
collecting traces on environmental noise. The trace gen-
erated by user i, denoted by Ti consists of a set of pairs
< nt

i, p
t
i > where nt

i and pti are respectively the observed
noise level and the location of the user in U at time t. Let
Pi = {pti}, ∀t and Ni = {nt

i}, ∀t, be respectively the set of
positions (i’s position set) occupied by the user over time
and the corresponding set of noise levels (i’s noise set). We
stress that, in order to guarantee users’ privacy, Pi should
not be disclosed to third parties, including the central au-

thority, and thus it should be represented in a suitable pri-
vacy preserving format. Instead, the set of noise values must
be publicly available, since it is used for the estimation of the
average noise level. To achieve this, user i sends to the cen-
tral authority the pair (Sk(Pi), Ni), where Sk(Pi) is a sketch
(i.e., a suitably generated compact summary) of Pi. In Sub-
section 3.2 we show how to generate Sk(Pi) so that it has
the following properties: i) Sk(Pi) represents Pi implicitly
in small space (in the order of 102 bytes at most) and does
not allow to infer Pi; ii) considered any area I of interest,
Sk(Pi) allows the central authority to estimate the extent
to which the set Pi of i’s positions covers I. Note that this
is achieved using only Sk(Pi), so that Pi is never explicitly
disclosed to third parties. All users’ traces T = T1, T2, .., Tn

are made available to the central authority according to the
mechanism described above. This, in turn collects the traces
and performs elaboration to answer queries issued by system
users concerning the average noise level in any area I ⊆ U
of interest. Let’s denote by Q(I) the query asking for the
average noise in area I. Upon reception of Q(I), the central
authority selects the minimum number of Pi’s guaranteeing
coverage of I and then calculates the average noise level over
time in that area. This is the classic set cover problem , but
contrary to classic set cover we have to enforce some kind of
privacy preserving technique to encourage users participa-
tion to the monitoring activity. In order to select the mini-
mal subset of user traces that cover I, the central authority
uses the techniques described in Section 4. In performing
this computation, it only uses the sketches Sk(Pi) of users’
position sets and not the position sets themselves.

3.1 Mobile phones as sound meters
The feasibility of using Mobile phones as sound meters has
already been discussed in [13, 11]. Both these works, pre-
sented a mobile phone application that, requiring user par-
ticipation, logs sound pressure values using the onboard mi-
crophone and some correction algorithms, thus obtaining
a limited estimation error. Shifting from participatory to
opportunistic monitoring, additional challenges have to be
discussed. In opportunistic contexts indeed, sampled values
can be affected by errors generated by external and unpre-
dictable noise sources. As an example, consider a user carry-
ing the mobile phone in her pocket: noise values could suffer
from attenuation effects or spikes due to the noise generated
by objects in the pocket (e.g., coins, keychains, voices). In
such a scenario, an additional filtering technique is needed
in order to obtain more accurate data. We defer the study
of these aspects to future work, and here we focus on the
evaluation of our system from an algorithmic point of view.

3.2 Privacy preserving data representation
As discussed before, in the application we envision, a user
only sends a compact summary of her position set, from
which it is hard to recover the original set. In this section
we present a class of sketches [6, 5, 4] that, while compact
and addressing the privacy issues mentioned above, allow
the (approximate) implementation of some basic primitives
on sets (such as union and intersection) that are required
to implement the algorithms presented in section 4. In the
rest of this subsection we present techniques used by mo-
bile users’ terminals to produce compact summaries of their
respective position sets.



Compact representation of sets: We only briefly outline
the principles underlying the technique we propose, leaving
out many theoretical aspects for the sake of brevity. The
interested reader can refer to [6, 5, 4]. In the remainder
of this subsection, we consider without loss of generality
subsets of [n] = {0, . . . , n− 1}, for a suitable integer n. We
briefly note that standard techniques allow us to reduce to
this situation in all practical cases1.

Assume we have a family H of hash functions such that: i)
every h ∈ H produces a permutation of [n]; ii) if h is chosen
uniformly at random from H the following holds: for every
set S ⊆ [n]:

P[x = arg min(π(S))] = 1/|S|, ∀x ∈ S.

Such a family is said minwise independent [4]. In practice,
minwise independent hash functions are hard to generate,
since they require a high number of truly random bits. In
this paper, we use functions of the form h(x) = ((ax + b)
mod c) mod n [3], that excellently approximate minwise in-
dependent families. Here, c is a large prime (e.g., the well-
known Mersenne prime 232 − 1) and n is the number of
possible locations in U . Finally, a ∈ {1, . . . , c − 1} and
b ∈ {0, . . . , c− 1}.

Sketch generation and maintenance: Considered any
subset S of [n], we construct its sketch as follows: for m
times, we choose, independently, uniformly and at random, a
hash function from a minwise independent family. Let Hi(x)
the i-th function chosen and let mini(S) = minx∈S Hi(x).
Then Sk(S) = {mini(S), . . . ,minm(S)}. In our case, we
consider hash functions of the form h(x) = ((ax+b) mod c)
mod n. In practice, generating such a hash function means
generating a and b uniformly at random from {1, . . . , c− 1}
and {0, . . . , c− 1} respectively.

Sketch properties: Given sets S1 and S2, the sketch of S1∪
S2 can be immediately obtained from Sk(S1) and Sk(S2)
as follows: Sk(S1 ∪ S2) = {M1, . . . ,Mm}, where Mi =
min{mini(X1),mini(X2)}. Another interesting property of
these sketches is that they allow to easily and accurately esti-
mate the Jaccard coefficient of two sets, a standard measure
of the similarity between sets, widely used in information
retrieval. Given two subsets S1 and S2 of [n], their Jaccard

coefficient is defined as J(L(S1), L(S2)) = |L(S1)∩L(S2)|
|L(S1)∪L(S2)|

.

It can be shown [4] that for every S1, S2 ⊆ [n]:
P[min(π(S1)) = min(π(S2))] = J(S1, S2). This suggests a
simple statistical estimator of the Jaccard coefficient of two
sets, which we discuss in the next paragraph. To estimate
J(S1, S2), we simply consider their sketches Sk(S1) and
Sk(S2) and let Cm = |{i : mini(S1) = mini(S2)}|. Then, a
simple probability argument allows to show that Cm/m is
an increasingly accurate estimate of J(S1, S2).

Compact representation of position sets: All mobile
users will use the same set H1(·), . . . , Hm(·) of minwise in-
dependent hash functions. These will be generated by the
central authority and then sent to each mobile user once,

1In our case, the position set Pi of a user i is a finite set of ge-
ographical positions (e.g., GPS coordinates). As such, it can
be put in correspondence with a subset of the integers using
standard techniques. E.g., [4] shows how to achieve this for
Web documents using Rabin’s fingerprinting method.

i.e., the first time she joins the application. Note also that,
in practice, the linear functions we use are represented in
terms of a small set of parameters. For example, if we use
100 hash functions, each mobile user will need to receive 202
integer values (the coefficients a and b of each hash func-
tion plus c and n), for a total of less than 1 KByte, if we
represent integers using 4 bytes. Then, mobile user i will
generate sketches of her position sets as follows: her sketch
Sk(Pi) is initially set to {0, . . . , 0}. Let {M1, . . . ,Mm} be
i’s sketch at some point. If she moves to a new position
p (e.g., identified by the GPS coordinates of a new base
station she connects to), then Sk(Pi) is updated as fol-
lows: Mj = min{Mj , hj(p)}, ∀j = 1, . . . ,m. This sketch
update corresponds to updating i’s position set as follows:
Pi = Pi ∪ {p}. This representation of position sets would
require an attacker willing to recover Pi knowing Sk(Pi) to
generate a sketch for all the possible Pi in the world U (even
with varying size) and estimate the Jaccard coefficient be-
tween them. The more is the size of U , the more an attack
is unfeasible.

4. PROBLEM STATEMENT
The problem of finding the minimum number of traces cover-
ing the area I of interest for a system user, can be formulated
as an instance of the NP − complete set cover problem. In
the classical set cover problem we are given a set I, taken
from a universe U , and a collection T = T1, T2, .., Tn of sub-
set of U . The pair (U, T ) is sometimes called a set system.
The aim is to compute a sub-collection T ′ ⊆ T which covers
I with minimum cost, namely using the smallest number of
sets in T .

In this section we first recall the Greedy Algorithm for set
cover and then, after providing a few useful remarks, we in-
troduce our algorithm that implements the greedy set cover
using sketches.

4.1 Greedy Algorithm for Set Cover with Uni-
tary Costs

This algorithm is given in figure 22.

Algorithm Standard-Greedy

Require: set system (T , U)
1: C = ∅ (C contains identifiers of sets in set

cover)

2: T̂ = T
3: Ŝ = arg maxS∈T̂ |S ∩ (U − C)|
4: while |S ∩ (U − C)| > 0 do

5: T̂ = T̂ − {Ŝ}
6: C = C ∪ Ŝ
7: Ŝ = arg maxS∈T̂ |S ∩ (U − C)|
8: end while
9: return C

Figure 2: Greedy Algorithm for Set Cover.

Since it seems hard to give the sketch of the difference of two

2In order to make the pseudo-code more readable, we
slightly abuse notation, since we regard C as both a set
of sets (the set cover) in line 9 and as the union of the sets
that form the cover in lines 3, 4, 6 and 7. Analogous con-
siderations hold for Algorithm 3.



sets given the sketches of the two sets, we slightly modify the
algorithm above, by replacing |S∩(U−C)| with |(S∪C)∩U |
in steps 3, 4 and 7 of Algorithm 2. Maximizing the former
quantity is equivalent to maximizing the latter.The proof is
trivial, and is omitted due to space constraints.

4.2 Greedy Set Cover Algorithm using sketches.
We next describe the algorithm PP-Greedy. This algorithm
is an implementation of the standard Greedy Set Cover al-
gorithm for the case of unitary set costs. The novelty is that
it is “rephrased” in terms of operations on set sketches in-
stead of the sets themselves. Algorithm 3 is the sketch-based
counterpart of Algorithm 2.

Essentially, in lines 5 and 11, instead of considering the max-
imization of |(S∪C)∩U |, we choose the set S, such that the
(estimated) Jaccard coefficient between S∪C and U is max-
imized. This, up to approximations, is the set S such that
Sk(S ∪ C) and Sk(U) share the largest number of equal
minima, i.e., the set that maximizes Eq(U,C ∪ S), where
Eq(U,C ∪ S) =

∑m
i=1(mini(U) == mini(C ∪ S)), namely

the number of times the minima of U and C ∪ S agree.

Algorithm PP-Greedy

Require: Sketch Sk(Si), for i = 1, . . . , |T |, Sk(U)
1: E = 0
2: C = ∅ (C contains identifiers of sets in set

cover)

3: Sk(C) = {∞}i=1,...,m

4: T̂ = T
5: Ŝ = arg maxS∈T̂ Eq(U,C ∪ S)

6: Ê = Eq(U,C ∪ Ŝ)

7: while Ê > E do
8: E = Ê
9: T̂ = T̂ − {Ŝ}

10: C = C ∪ Ŝ
11: Ŝ = arg maxS∈T̂ Eq(U,C ∪ S)
12: end while
13: return C

Figure 3: Privacy Preserving Greedy Algorithm for
Set Cover.

5. PRELIMINARY RESULTS
In this section we discuss the results of a preliminary ex-
perimental activity performed to verify the performance of
PP-Greedy vs Greedy on synthetic traces.

Generating traces: Our experiments are based on mobil-
ity traces generated through the Global Mobility Simulation
Framework (GMSF) [1] developed at ETH Zurich. It allows
to generate mobility traces according to different models,
such as Random Waypoint, Manhattan, or GIS Based. In
our experiments, 10, 50 and 100 mobile users move in a
square U of side length d = 1000 units, according to the
Manhattan model; each user generates a trace made of a to-
tal of 35000 positions . We adopted the Manhattan model,
because it is the most suited to describe the mobility pat-
terns of users in a urban scenario. Moreover, in order to
make the simulation more realistic for an opportunistic sce-
nario, whenever a user stops in the simulated environment, it
generates a sketch of the set of positions Pi she went through

so far, and opportunistically sends it to the central authority.
In other words, each user sends to the central authority a set
of sketches Sk(Pi); each of them representing a subset of the
35000 positions sampled by the user.Sketches are generated
starting from the set of positions Pi applying the technique
described in section 3.2 with m = 100 hash functions; this
number of hash functions provides the best trade-off between
accuracy and size of the sketches [2]. The resulting sketch
is an array of 100 integers, with a total size of 400 bytes.

The area of interest I considered for the experiments are the
crossroads in the Manhattan topology, each one centered on
the diagonal of U (from the center to the top-left corner of
the square) made of 200 positions.

Metrics: The Greedy algorithm Gr receives in input the
area of interest I and the set of sets of positions sampled
by the users P = P1, .., Pn, and provides as output the set
PGr ⊆ P that approximate the set cover of I. The PP-
Greedy algorithm PP − Gr, instead of the set P , receives
in input SkP = (Sk(P1), .., Sk(Pn)), and provides as output
the set PPP−Gr ⊆ SkP that approximate the set cover of I.
We evaluate the performance of Gr and PP−Gr considering
three metrics. The cardinality of output i.e., the number of
position sets used to cover the area of interest, the coverage
of the output, intended as the fraction of positions in the
area of interest that are covered by the output.3. The error,
defined as the fraction of positions in the output which are
not in I. As an example consider the following sets I = 1, 3,
PGr = 1, 2, 3, 4. In this case the cardinality is 2, the coverage
is 100% and the error is 50%.

Results: As expected and as figure 4(a) shows, the cov-
erage achieved by both algorithms slightly increases with
the number of participating mobile users (i.e. number of
traces). The behaviors of both algorithms are similar, but
PP-Greedy always achieves 10% less coverage than Greedy;
this is the consequence of the loss of information due to the
use of sketches instead of the explicit position sets. More sur-
prisingly, the cardinality of PP-Greedy outputs is remark-
ably lower, approximately half the cardinality of Greedy (see
figure 4(b)). The higher cardinality of the Greedy solution
results in an increased error of Greedy, as can be observed
in figure 4(c). This is due to the fact that each new set
added to the solution contributes with a minimum number
of positions . Thus, increasing the cardinality of the solution
in general improves the coverage, but when the coverage is
already high, each new set added to the solution will have
an increasingly higher chance of contributing with new po-
sitions that do not belong to the area of interest, thus in-
creasing error. This explains why the PP-Greedy’s error is
always lower than 15%, while Greedy’s error is always higher
than 25%. There seems to exist a “breaking-point” for the
solution, beyond which the addition of more Pi’s to the so-
lution slightly increases coverage, but at the same time it
significantly increases error.

6. CONCLUSIONS AND FUTURE WORK
The lower accuracy of PP-Greedy is fairly compensated by
the lower error and cardinality of its outputs; as suggested

3We calculate the coverage of PPP−Gr considering the set
of corresponding positions



(a) Coverage (b) Cardinality (c) Error

Figure 4: For every area of interest and for every performance metric, we averaged the results over 10 runs
of both algorithms.

by our results, there is an interesting trade-off between ac-
curacy on one-side and cardinality and error on the other.
This observation seems to support the conclusion that PP-
Greedy algorithm is a good privacy preserving approxima-
tion of Greedy but at the same time this preliminary results
deserve future investigations about the effects of tuning the
granularity of Pi’s with respect to the dimension of I that
would directly impact on coverage and error of both algo-
rithms, possibly reducing the actual performance differences.
Moreover, tuning the number m of hash functions could out-
line a better trade-off between the accuracy of sketches and
their size. Finally, we plan to extend our approach to differ-
ent application domains.
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