
Catching Cheats with Interactive Proofs:
Privacy-preserving Crowd-sourced Data Collection

Without Compromising Integrity

Akshay Dua, Nirupama Bulusu, and Wu-chang Feng
Department of Computer Science

Portland State University
{akshay,nbulusu,wuchang}@cs.pdx.edu

ABSTRACT
Crowd-sourced sensing systems allow people to voluntarily
contribute sensor data from mobile devices. They enable
numerous applications, including weather and traffic moni-
toring. However, their proliferation is at risk if the problems
of data integrity and privacy persist. People will be reluc-
tant to contribute sensitive information if they cannot trust
the system to maintain their privacy, and the system will
be reluctant to accept any data transformed to preserve pri-
vacy without proof that the transformation was computed
accurately. We present an interactive proof protocol that al-
lows an intermediary to convince a data consumer that it is
accurately performing a privacy-preserving transformation
with inputs from trusted sources, without providing those
inputs to the consumer. We provide soundness and correct-
ness proofs for the protocol, discuss its current limitations,
and describe its parameters and their effect on data integrity
and privacy when tweaked.

1. INTRODUCTION
Integrity of the collected data, and the privacy of data

sources are first order concerns for crowd-sourced sensing
systems. Such systems can enable critical applications like
faster emergency response, and improve health, environ-
ment, and traffic monitoring [13, 10, 1]. However, people
will be reluctant to volunteer sensitive information (e.g. lo-
cation, health statistics) if they cannot trust the system to
protect their privacy. Conversely, if the volunteered infor-
mation is first modified to protect privacy, then the system
will be reluctant to trust that modification without proof of
its integrity.

Consequently, integrity and privacy compete with each
other. If the collected data has been previously transformed
to preserve privacy (e.g. mixed, aggregated), then a data
consumer cannot determine the transformation’s integrity
unless the raw data used as input is presented as well. How-
ever, if the raw data is presented, then the privacy of the
data sources gets compromised.

This work attempts to simultaneously provide integrity
and privacy guarantees for published data without signifi-
cantly compromising either. The system model assumes a
set of trusted data sources that collect and forward sensory
data to a privacy proxy, which performs a privacy-preserving
transformation on the received data, and finally forwards the
result to a data consumer. The goal is to assure the data con-
sumer that the proxy indeed computed the expected privacy
transformation using data from expected sources (integrity)

without providing the consumer with that data (privacy).
Much of the existing work on crowd-sourced sensing, with

a focus on integrity and privacy, adheres to this model.
Moreover, such a model has the advantage of decoupling the
privacy transformation from data collection, enabling trans-
formations that mix data from multiple sources, or perform
application-specific data perturbations on the same data.
Examples of this model include our earlier work on the de-
sign and implementation of a Trusted Sensing Peripheral
(TSP) that produces and publishes trustworthy sensory in-
formation to a data portal via the user’s personal mobile
device [5]. The mobile device is allowed to aggregate the
data from the TSP before forwarding it. In this case, the
mobile device can play the role of the privacy proxy, while
the portal plays the role of the data consumer. Other ex-
amples include PoolView [6], which introduces the personal
privacy firewall to perturb a user’s raw data before pub-
lishing it to an aggregation service, DietSense [13], which
provides private storage to a user where she can edit the im-
ages collected from her phone before sharing it further, and
AnonySense [11], which uses a trusted server to mix data
from at least l clients to provide l-anonymity.

This paper presents an interactive proof protocol [9], using
which, only an honest privacy proxy can convince a data con-
sumer that it is correctly computing the expected privacy-
preserving transformation, while protecting the privacy of its
data sources. The key idea is that unlike traditional interac-
tive proofs with one prover (privacy proxy) and one verifier
(data consumer), ours involves a collaboration between the
verifier and an additional trusted party (data source) to keep
the prover in check. We provide soundness and correctness
proofs for the protocol, discuss its current limitations, and
describe its parameters and their effect on data integrity and
privacy when tweaked.

2. PROBLEM STATEMENT
Only an honest privacy proxy P should be able to convince

a data consumer C that it is indeed transforming data Dj =
{d1j , d2j , ..., dnj}, received in interval j, from a set of sources
S = {s1, s2, ..., sn}, using only the transformation function
fpriv. C receives the result pj = fpriv(Dj), but never the
data Dj . The system model is shown in Figure 1.

3. BACKGROUND
Goldwasser et al. [9] introduced the concept of interactive

proof systems where a prover P exchanges messages with a
verifier V and convinces it with high probability that some



s2

s1

sn

P

pj = fpriv(d1j , ..., dnj)

C

accept pj , or
challenge P

d1j

d2j

dnj

pj

Figure 1: System model

statement is true. As a simple example [2], consider how
Alice proves to Bob that she can distinguish between Coke
and Pepsi. Alice turns her back, then Bob tosses a fair coin,
puts Coke or Pepsi in a glass according to the result, and
challenges Alice to say which drink it is. Alice tastes the
drink and tells Bob which one it is. If Alice cannot actu-
ally distinguish between the drinks, then she has a chance of
being right with probability 1/2. However, when the experi-
ment is repeated k times (each called a “round”) her chances
are slimmer: 1/2k. Thus, when k = 10 and Alice answers
correctly each time, Bob will be convinced with probability
1 − 1/210 or 99.9% that Alice can taste the difference be-
tween the drinks. It is key, that the prover (Alice) not know
anything about the challenge before it is presented to her
by the verifier (Bob). Otherwise, a malicious prover would
answer correctly each time. For example, if Alice secretly
held a mirror and saw Bob flip the coin and pour out the
respective drink, she would simply have to name that drink
once Bob challenges her.

Interactive proof systems must be, a) complete: any true
statement must be accepted by the verifier, and b) sound :
any false statement must be rejected by the verifier (barring
a negligible probability of error). Based on such a proof
system, we have constructed a challenge–response protocol
that allows a privacy proxy (the prover) to prove to a data
consumer (the verifier) that it is honestly performing the
privacy transformation, but without giving the consumer the
inputs to that transformation.

4. THREAT MODEL
Our protocol is designed to prevent a malicious C from

learning about the raw data D from the set of trusted sources
S, and prevent a malicious P from either using a different
transformation: f ′priv instead of fpriv, or different data: D′

instead of D, or both. Since data consumer C has a vested
interest in the integrity of the privacy-preserving transfor-
mation, it is assumed to be an adversary of privacy, but not
of integrity. The privacy proxy P on the other hand is as-
sumed to be an adversary of integrity, but not of privacy.
The reason being, that P may actually be controlled by the
sources themselves, or maybe trusted by them to not reveal
their data. An implication of the above adversarial model is
that P and C do not collude in any way.

We do not consider threats from eavesdropping adver-
saries since standard network security protocols, like TLS,
can easily be used to combat them. We also do not consider
situations in which P , C, and S do not interact sincerely,
implying that neither side suppresses a response expected
by the other. Further, we assume S is trusted, its origin is

anonymized via a mix network like Tor [4], it can perform
anonymous signatures like those described in group signa-
ture schemes [3], and that C honestly executes the protocol
(since C has a vested interest in collecting high-integrity
data). However, C is free to perform offline privacy attacks
on the data received from P . Note that our work focuses on
content, as opposed to, origin integrity and privacy.

5. INTERACTIVE PROOF PROTOCOL
As shown in Figure 1, C collects data, transformed using

fpriv at regular intervals, from sources S, via P . d1j repre-
sents the data sent by source s1 during interval j. Now, in
each interval, C can choose to accept the transformed value
pj as-is, or challenge P to prove pj ’s integrity. This chal-
lenge message marks the beginning of the interactive proof
protocol. In Section 5.5, we discuss our protocol’s parame-
ters that allow C to challenge all received transformations,
or randomly challenge a portion of them.

For simplicity, we explain the protocol using only one
trusted data source, say s1. Consequently, we assume that
data d1j is an m-tuple of raw sensory data values [x1j , ..., xmj ]
collected in interval j. Now, instead of P computing pj =
fpriv(d1j , ..., dnj) as shown in Figure 1, it will be computing
pj = fpriv(x1j , ..., xmj). An example of this single-source
scenario is a location-based service, where instead of send-
ing raw GPS coordinates d1j from s1, P sends a coarser
region covered by those coordinates. The generalization to
multiple sources will be postponed to a more comprehensive
version of this paper.

5.1 Constraints
Our protocol must adhere to the following constraints:

1. The data consumer is never provided with the raw data
d1j . This is the basic privacy requirement.

2. The data consumer should be able to determine with
high probability that:

• The inputs to the privacy transformation fpriv

consist of only those coming from s1.

• No other transformation but fpriv is being per-
formed on those inputs.

3. As implied in Section 3, P must not know the challenge
before it is presented by C. Otherwise, P may tailor
its response to pass only that challenge. The key to an
interactive proof is that an honest prover can pass both
challenges, but a dishonest one can only pass either by
guessing.

4. P must not know beforehand the interval j in which it
will be challenged. Otherwise, it would compute fpriv

correctly only during those intervals.

5.2 Protocol Details
For the protocol to work, we require a shared symmetric

key ksc between the source s1 and the data consumer C,
a buffer at s1 that is large enough to store data collected
in b distinct intervals, and we need to impose the follow-
ing constraint on the transformation function fpriv: given a
function g(r, x) that obfuscates input x using random num-
ber r, we require that

fpriv(g(r, x1j), ..., g(r, xmj)) = g(r, fpriv(x1j , ..., xmj)) (1)



s1 P C

j = 1: sense x11, ..., xm1

save [x11, ..., xm1], j = 1
s1 → P : x11, ..., xm1 d11 = x11, ..., xm1

P → C: p1 = fpriv(d11) p1

j = 2: sense x12, ..., xm2

s1 → P : x12, ..., xm2 d12 = x12, ..., xm2

P → C: p2 = fpriv(d12) p2

... ... ...

Table 1: Normal Operation

So for example, let g(r, x) = r · x, and fpriv(x1j , ..., xmj) =
mean(x1j , ..., xmj), then:

fpriv(g(r, x1j), ..., g(r, xmj)) = mean(r · x1j , ..., r · xmj)

= r ·mean(x1j , ..., xmj)

= g(r, fpriv(x1j , ..., xmj))

Section 7 discusses the practicality of the above imposed con-
straint and highlights examples of privacy-preserving trans-
formations that indeed satisfy the constraint. We now dis-
cuss the details of the protocol.

Table 1 shows, that while performing its normal sensing
duties, source s1 continues to randomly pick an interval j
and save the data [x1j , ..., xmj ] collected in that interval.
Once the buffer is full (has b intervals worth of data) s1

uniformly and randomly selects an interval of data from its
buffer (Table 2). It then sends one of two sets of messages
to P and C corresponding to each challenge, after which a
simple indicator challenge message from C to P begins the
interactive proof. Once the proof is complete, s1 can purge
the respective interval of data from its buffer, thus making
room for data from the next randomly picked interval. Other
notation includes Eksc , which is some symmetric encryption
scheme using key ksc.

The proof starts when C challenges P about the integrity
of some transformed result pj received in the past (Table 2);
we call this pj a commitment from P . However, which inter-
val j is challenged, is decided by s1 and selectively revealed
to C. The goal is to not let C have j and the obfuscated val-
ues M2 together. Otherwise, it can recover r and therefore
the raw values from s1. What is noteworthy, is that unlike
traditional interactive proofs with one prover and one veri-
fier, ours involves a collaboration between the verifier C and
an additional trusted party (the data source) to keep the
prover P in check.

There are two types of challenges and associated tests that
take place. Message M1 corresponds to the first type of
challenge, while M2 to the second type. The first type is
designed to test the integrity of P ’s past commitment, while
the other tests the computation of fpriv itself. The padding
PAD assures that M1 and M2 have the same length. The
encryption further ensures that the messages are statistically
similar. That way, a malicious P intercepting message M1

or M2 will be unable to discern them and hence, not know
which type of test will be performed by C.

Intuitively, the protocol is trying to ensure that C does
not have r or j, and the obfuscated message M2 together
in any given interval j. Otherwise, C could first recover r
using the property in Equation (1), and then recover s1’s raw
data values from M2 (remember that g(r, x) only obfuscates

x, and is not a cryptographic one-way function).
At the same time, the protocol wants to ensure that P

does not know what type of test is going to be performed by
C. Otherwise, P might tailor its response to pass only that
test. For example, assume that in each interval, a malicious
P fabricates the transformation it sends to C. Also assume,
that it caches all raw data values ever received from s1, and
computes and caches (but does not send to C) the correct
pj for each interval as well. Now, suppose it knows that
challenge 1 is underway. Then, it computes p as required
by the challenge, recovers some r (not necessarily the right
one) using p = g(r, pj) for some interval j, extracts each
raw value from the obfuscated message M0, and compares
the set of raw values with those cached for that interval. If a
match is found, P knows it has the correct j and therefore r,
otherwise it picks another interval j and repeats this process
till a match is found. With the correct value of r, it can
provide C with the expected response p and pass challenge
1 each time. Now, if P did not know which challenge was
underway, then the above attack (called the find-r attack)
can only pass challenge 1 but not challenge 2. So, with
probability 1/2 a malicious P ’s response to the challenge
would be rejected by C. However, an honest P ’s response
could simultaneously pass both tests.

5.3 Analysis
Without going into details, we now point out that our

protocol satisfies all constraints mentioned in Section 5.1,
but the second one. The second constraint can be satisfied
by parametrizing the protocol, and this is discussed in the
next section. We now show that our interactive proof is
complete and sound.

Completeness is easier to prove. From Table 2, we can see
that any honest P that computes and publishes fpriv(d1j),
and then fpriv(g(r, x1j), ..., g(r, xmj)) when challenged, will
indeed pass either of C’s integrity tests with its response p.

We prove soundness by case analysis. But first, we can
safely assume that g(r, x) is honestly computed. Since dur-
ing either challenge, one honest party, C (honest with re-
spect to executing the protocol) or s1 (trusted), computes
g. Thus, if P computes some g′ instead of g it will fail ei-
ther challenge. There are three cases we must consider: P
may use fabricated inputs to the transformation fpriv, may
use the wrong transformation, or both. Throughout, we will
refer to notation used in Table 2.

Case 1. Fabricated inputs: If a malicious P publishes
pj = fpriv(d′1j) instead of pj = fpriv(d1j), then during the
challenge it must still prove to C that p = g(r, pj). If it
honestly computes p, then this check will fail. If P mounts
an attack similar to find-r described in Section 5.2, it can
pass C’s first test, but not the second. Since in the second
test, M2 comes directly from the trusted source s1.

Case 2. Wrong transformation: If a malicious P is
computing f ′priv(d1j) instead of fpriv(d1j), then to pass ei-
ther test, f ′priv must share the same relationship with g that
fpriv does (Equation (1)). Now say that it does, then P
could pass C’s first test, but again, not the second one. Since
in the second test, C itself computes fpriv. Also, P ’s find-r
attack suffers the same fate.

Case 3. Wrong inputs and transformation: If a
malicious P is computing f ′priv(d′1j) instead of fpriv(d1j),
then the find-r attack could pass test 1, but not test 2.
Since in test 2, C computes fpriv with trusted inputs from



s1 P C

From b saved intervals, randomly pick j
Then, pick random number r
Then, with probability 1/2, either send:
s1 → C: M1 = Eksc (r, j, PAD)
s1 → P : M0 = g(r, x1j), ..., g(r, xmj)
OR send:
s1 → C: M2 = Eksc (g(r, x1j), ..., g(r, xmj))
s1 → P : M0 = g(r, x1j), ..., g(r, xmj)

M0 M1 OR M2

On receiving challenge, ← Challenge P
p = fpriv(M)
P → C: p p

Test 1 (if received M1):
r, j, PAD = Dksc (M1)
if p 6= g(r, pj), reject

Test 2 (if received M2):
if p 6= fpriv(Dksc (M2)), reject

Table 2: Interactive proof of integrity for privacy-preserving transformations performed by P

source s1.

5.4 An Attack on Privacy
It is possible for C to launch an offline privacy attack

on the g(r, x1j), ..., g(r, xmj) data values it receives during
challenge 2. As mentioned before, g is only assumed to be
an obfuscation function that can easily be reversed. Leading
to ways in which r could be retrieved, and then possibly the
raw data values xij , 1 ≤ i ≤ m.

This attack is the same as find-r described earlier, but
without the cache of raw trusted data values from the source.
Without this cache, C will not know if the retrieved raw
values are actually correct. It would have to guess if the
retrieved raw data values seems “plausible”. This attack can
be mitigated by increasing the number of possible choices
from which to guess. We discuss this further in Section 5.5.
In the worst case, C could obtain raw data values for 1/2 the
number of intervals in which it challenges P . Furthermore,
the plain-text guessing required in this attack may require
human intervention, making this attack more costly.

5.5 Parameters
Table 2 describes only one round of the interactive proof.

Using multiple rounds, C can gain more confidence in the
integrity of the published value pj being challenged. Further,
by challenging more often, C can gain more confidence in
the integrity of the data stream in general. Based on such
observations, we have defined the following parameters:

• h: the percentage of intervals that C will challenge
P . So, if h is 20%, then C will randomly challenge P
during one of every five intervals. Note that s1 must
know h as well, since it initiates the challenge. A larger
h, will provide more integrity, but will reduce privacy
since C will receive more obfuscated values that it can
potentially attack offline.

• k: the number of rounds each interactive proof is ex-
ecuted. As mentioned in Section 3, with k = 10, C
can have 99.9% confidence in the integrity of the pub-
lished value being challenged. Closely related to k, is
an interesting metric we call the confidence index of

P : defined as the number of challenges P has passed,
over the total times challenged. When k is low (say
1, i.e. 50% chance a published value is incorrect), and
P ’s confidence index is high (say 100%) then C can
still be sure about the integrity of the already pub-
lished values from P . However, if P ’s confidence index
is low, then C can choose to increase k and at least
gain more confidence each time it challenges P .

• b: the number of intervals of data that s1 needs to save
before initiating challenges. Increasing b can mitigate
the privacy attack discussed in the previous section.
It will increase a malicious C’s ambiguity about the
correct inputs to fpriv that might have created a given
pj . For a given interval j, C would have to choose
between b/h possible sets of inputs. For example, if
b = 1000 and h = 1/5, then C would have to guess
the right inputs from 5000 possible ones. In the worst
case, C can retrieve h/2 intervals of raw data.

10 20 30 40 50
0

50

100

150

200

Fabrication Probability q (%)

E
(N

)

 

 

h = 10%
h = 20%
h = 30%
h = 50%

(a) Varying h, k = 1.

10 20 30 40 50
10

20

30

40

50

60

Fabrication Probability q (%)

E
(N

)

 

 

k = 3
k = 6
k = 10

(b) Varying k, h = 20%.

Using parameters h and k we have the following equation
for the expected number of intervals E(N) before C detects
a malicious P . Here, P is fabricating a transformed value
pj with probability q.

E(N) =

∞X
n=1

n× (1− hq(0.5k))n−1 × hq(0.5k) (2)

Plots of E(N) while varying either h or k are shown in Fig-
ures 2(a),2(b). When h = 20%, q = 10% a malicious P is



expected to fail a challenge in 100 intervals, and publish 10
fabricated transformed values. Also, by setting k = 3 (in-
stead of k = 1) we can reduce time to detection by ≈ 40%.

6. RELATED WORK
Much of the previous security oriented work in crowd-

sourced sensing has focused either on data integrity, or pri-
vacy. PoolView [6] enables community statistics to be com-
puted using perturbed private data, but trusts its users to
honestly perturb that data. PriSense [14] employs data
slicing and mixing to provide privacy while still support-
ing a wide variety of aggregation functions. However, it is
assumed the functions themselves are honestly computed.
Our previous work on Trusted Sensing Peripherals [5] sup-
ports high-integrity aggregation, but does not provide pri-
vacy guarantees.

VPriv [12] makes a strong attempt to offer integrity and
privacy for computing tolls over paths driven by vehicles.
However, due to the use of an additive homomorphic com-
mitment scheme, VPriv can only guarantee the integrity of
additive functions. Additionally, the random spot checks
needed to keep drivers honest may compromise privacy.

Fully homomorphic encryption schemes (addition and mul-
tiplication operations supported over ciphertexts) could go
a long way in solving the integrity and privacy problem.
The first such scheme was recently introduced by Gentry et
al. [7]. However, computation on ciphertexts is still widely
considered to be computationally expensive.

7. LIMITATIONS
It remains to be seen what types of privacy-preserving

transformations can work with our protocol, given the con-
straint in Equation (2). We have shown that a transforma-
tion computing the mean of its inputs can be used. Other
transformations we plan to investigate include mixing data
from multiple sources to provide k-anonymity [15], and pos-
sibly location blurring.

Interactive proofs require their participants to be online.
Hence, the data sources need to be online while the proof
is taking place. Future work could include constructing a
non-interactive proof that achieves the same goals.

Interactive proofs can be zero-knowledge [8] if no other
information but the truth of the statement being proved is
revealed. Unfortunately, our protocol falls short of this goal
because data privacy could possibly (not surely) be compro-
mised by a malicious data consumer (see Section 5.4).

8. CONCLUSION
Crowd-sourced sensing has a bright future, but both the

integrity of the collected data, and the privacy of data sources
are always at risk. Without integrity assurances, data con-
sumers like the government or researchers will be reluctant
to use the data, and without privacy assurances, people will
be reluctant to contribute the data.

We have proposed a possible solution using interactive
proofs that simultaneously addresses the conflicting prob-
lems of integrity and privacy. The interactive proof allows
an intermediary to convince a data consumer that it is accu-
rately performing a privacy-preserving transformation with
inputs from trusted sources, without providing those inputs
to the consumer. Sources can be trusted when, for example,
they provide verifiable attestations to the integrity of sensed

data with the aid of integrated trusted platform modules [5].
The key idea is that unlike traditional interactive proofs with
one prover (privacy proxy) and one verifier (data consumer),
ours involves a collaboration between the verifier and an ad-
ditional trusted party (data source) to keep the prover in
check. We have provided soundness and correctness proofs
for the protocol, discussed its limitations, and described its
parameters and their effect on data integrity and privacy.

9. ACKNOWLEDGMENTS
This work was supported by the National Science Foun-

dation under grants CISE-0747442 and CNS-1017034. We
would like to thank Tom Shrimpton for his valuable feedback
on the contents of this paper.

10. REFERENCES
[1] E. Agapie, E. Howard, J. Ryder, A. Steiner, D. Lam,

R. Rosario, A. Modschein, D. Houston, J. Burke,
M. Hansen, et al. PEIR. 2007.

[2] B. Barak. Lecture 15: Zero Knowledge Proofs.
www.cs.princeton.edu/courses/archive/spring10/
cos433/lec17new.pdf, Nov 2007.

[3] D. Chaum and E. Van Heyst. Group Signatures. Berlin:
Springer-Verlag, 265, 1991.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security, pages
21–21. USENIX Association, Berkeley, CA, USA, 2004.

[5] A. Dua, N. Bulusu, W. Feng, and W. Hu. Towards
Trustworthy Participatory Sensing. In HotSec’09:
Proceedings of the 4th USENIX Workshop on Hot Topics
in Security. USENIX Association Berkeley, CA, USA, 2009.

[6] R. Ganti, N. Pham, Y. Tsai, and T. Abdelzaher. PoolView:
stream privacy for grassroots participatory sensing. In
Proceedings of ACM SenSys, pages 281–294, Raleigh,
North Carolina, 2008. ACM.

[7] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the 41st annual ACM symposium
on Theory of computing, pages 169–178. ACM, 2009.

[8] O. Goldreich, S. Micali, and A. Wigderson. Proofs that
yield nothing but their validity or all languages in NP have
zero-knowledge proof systems. Journal of the ACM
(JACM), 38(3):728, 1991.

[9] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings of
the seventeenth annual ACM symposium on Theory of
computing, page 304. ACM, 1985.

[10] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko,
A. Miu, E. Shih, H. Balakrishnan, and S. Madden. Cartel:
a distributed mobile sensor computing system. In
Proceedings of ACM SenSys, pages 125–138, Boulder,
Colorado, 2006. ACM.

[11] A. Kapadia, N. Triandopoulos, C. Cornelius, D. Peebles,
and D. Kotz. AnonySense: Opportunistic and Privacy
Preserving Context Collection. LNCS, 5013:280, 2008.

[12] R. Popa, H. Balakrishnan, and A. Blumberg. VPriv:
Protecting privacy in location-based vehicular services. In
Proceedings of the 18th Usenix Security Symposium, 2009.

[13] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and
M. Hansen. Image browsing, processing, and clustering for
participatory sensing: lessons from a DietSense prototype.
In ACM SenSys, pages 13–17, Cork, Ireland, 2007. ACM.

[14] J. Shi, R. Zhang, Y. Liu, and Y. Zhang. PriSense:
Privacy-Preserving Data Aggregation in People-Centric
Urban Sensing Systems. In IEEE INFOCOM, 2010.

[15] L. Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty Fuzziness and
Knowledge Based Systems, 10(5):557–570, 2002.


