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ABSTRACT
We present the concept of Responsive Sleeping, where the
mobile phone can continue to sense its environment in the
sleep mode. This capability enables novel applications in
user interaction, context awareness, and people monitoring.
However, the state of the art phone architectures today re-
quire the application processor (AP) to be active to read sen-
sor data. The energy consumption makes responsive sleep
impractical. In this paper, after analyzing the root cause of
mobile sensing energy consumption, we present a new mobile
phone architecture that uses heterogeneous multi-processors
(or a multi-core processor) to achieve energy efficient respon-
sive sleeping (EERS). We present a prototype called Little-
Rock and evaluate its energy benefit for responsive sleep
through continuous sensing examples.

1. INTRODUCTION
Mobile phones today follow their users in almost every

activity they engage in. The ubiquity, mobility, and connec-
tivity of smart phones have made them ideal platforms for
personalized mobile services, evident from the large number
of applications available for various mobile platforms. Apart
from having a reasonably powerful processor and graph-
ics capability, current high-end smart phones have a rich
set of built-in sensors, such as GPS, microphone, camera,
accelerometer, ambient light, compass, gyro, and pressure
sensors that enable measuring various phenomena on and
around the phones and thus their owners. Location-aware
services, natural user interfaces, and many games rely on
these sensors to provide a superior user experience.

While it is most common for mobile applications to use
the sensors on-demand, where sensor reading operations are
initiated by the foreground process, application developers
have also shown the value of performing continuous sensing
in the background, even when the phone is not receiving di-
rect user attention. For example, in UbiFit [3], Klasnja1 et.
al. studies user behavior changes when they are fed with
fitness information such as exercise tracked by wearable ac-
celerometer and barometer sensors. In [6], a single wearable
sensor is used to estimate the calori expenditure of a user. In
Playful Bottle [2], Chiu et. al. attached a mobile phone to a
water drinking device and used images and motion to detect
the frequency and quantity of the user’s water consumption.
In SoundSense [8], Lu et. al. designed a mobile phone ap-
plication that uses sound signatures to detect user location
and activity. In the Mobile Millennium project [1], mobile
phones were used as tripwire sensing devices to collectively
detect traffic conditions.

All of these applications require the phone to continuously
sample its sensors independently of whether the user is inter-
acting with the phone. We call the capability that the phone
can continuously sense while appears to be sleeping Respon-
sive Sleeping (RS). In a responsive sleeping mode, the phone
does not draw user attention or require a foreground appli-
cation. However, in the background, it can continuously
monitor sensor input and wake up the phone if interesting
events happen.

Responsive sleeping can also greatly improve user experi-
ence with the phone, as if the phone is always on. For ex-
ample, if a phone can detect that it is being picked up from
the table and is approaching the face, it can automatically
enter the voice command mode. If the phone can continu-
ously monitor audio input, it can run speaker recognition to
detect the user’s company; then it can use this information
to pop up reminders or set UI preference (e.g. adjusting ring
tone or vibration). Another example is “geo-fencing”, where
an application registers a geographical region of interest, so
that an event is triggered to wake up the phone and activate
the application when the phone enters that region.

Responsive sleeping can be based either on sensors on the
phones, or on external sensors that communicate wirelessly
with the phone. In both cases, the energy consumption for
supporting RS is challenging. For example, we will show
in section 2 that a simple pedometer application can drain
a smart phone battery in a few hours. This energy ineffi-
ciency is not due to the system software overhead, e.g., task
scheduling, but rather due to the fundamental limitations of
current phone architecture. That is, to acquire any sensor
data or communicate with detached sensors, the application
processor (AP) must be active and running. Active APs
typically consume hundreds of milli-Watts (mW) of power.
In section 2, we also show that sensor duty cycling [10] does
not solve the energy inefficiency problem, since it takes up
to a second for the AP to wake up from the sleep mode and
restore the state for taking sensor readings.

Enabling energy efficient responsive sleeping (EERS) mo-
tivates us to rethink the mobile phone sensing architecture.
In this paper, we propose a new mobile phone sensing ar-
chitecture that can support EERS by breaking the tight
coupling between sensors and the AP. With heterogeneous
multi-processors or multi-core processors, a low power mi-
crocontroller or processor core can manage the sensors with-
out shortening the battery life noticeably. As a prototype
platform, we designed LittleRock, which adds a small, en-
ergy efficient co-processor to the phone to offload sensing
tasks to this small processor. All the available sensors and



Sensor Sensor State HTC Touch Pro State (mW)
Active(mW) Sleep(µW) 1Hz Sampling(mW) Active (1680) Idle (399) Sleep (7.56)

Accelerometer 0.6 3 0.018 0.001% 0.004% 0.23%
Temperature 0.225 3 0.02 0.001% 0.005% 0.26%

Pressure 1.8 0.3 0.02 0.001% 0.005% 0.26%
Compass 2.7 7.5 0.5 0.03% 0.125% 6.61%

Gyro 19.5 15 1 0.06% 0.251% 13.22%
GPS chip 214 5 30 1.78% 7.518% 397%

(1MIPS CPU required) (acq. state)

Total (with GPS) 238.825 34.1 31.558 1.88% 7.91% 417%
Total (without GPS) 24.825 29.1 1.558 0.093% 0.39% 20.6%

Table 1: Power consumption of different types of sensors and their overhead (assuming 1Hz sampling rate)
on the overall power consumption of an HTC Touch Pro phone in 3 representative power states.

short range radios on the phone are connected to the small
processor, enabling the rest of the phone to go into the sleep
mode. While the phone is sleeping, the co-processor can
continue to acquire samples, process sensor data, and com-
municate with external sensors, all at a low energy overhead.
Since the two processors are tightly integrated, data between
them can be easily buffered and quickly exchanged on de-
mand. We discuss EERS architectures in section 3 and the
design of LittleRock in section 4.

Multiple sensing modalities can usually achieve the same
goals with different energy and processing requirements. The
addition of the sensing processor complicates this problem
by introducing additional trade offs between energy and
computation. In addition, the heterogeneous multiprocessor
architecture brings complexities to software design and ap-
plication programming. We discuss key hardware and soft-
ware challenges toward responsive sleeping in section 6.

2. MOBILE ENERGY BREAKDOWN
Battery life is one of the most critical design parameters

for a phone. Every new feature introduced, either it is hard-
ware or software, has to minimize its impact on the battery
life. Consequently, although continuous sampling and pro-
cessing of sensor data enables new application modalities, it
is necessary that these additional features do not severely
reduce the phone battery life.

Table 1 shows the overhead introduced by popular types
of sensors in the power consumption of a mobile phone,
the HTC Touch Pro running Windows Mobile 6.1. The
power overhead for each sensor is expressed as a percentage
of the power consumed by the HTC phone in 3 represen-
tative power states: Active(1680mW), Idle(399mW), and
Sleep(7.56mW). In the Active state, the phone is exercising
its CPU by running random computations while simultane-
ously downloading data over the 3G radio. In the Idle state
the phone is turned on, but there is no load imposed on the
CPU beyond the background services introduced by the op-
erating system. Also, no data is being sent or received over
the 3G radio. In the Sleep state the main processor is in
sleep mode.

When all the sensors listed in Table 1 are powered up, the
overall power consumption of the phone at the Active, Idle
and Sleep states increases by approximately 1.88%, 7.91%,
and 417% respectively. Note that in all cases, the GPS sen-
sor is responsible for 95% of the overall power overhead.
However, as recent work has demonstrated, more energy ef-

ficient location sensing can be achieved by properly combin-
ing cell tower triangulation and wifi fingerprinting to enforce
more aggressive duty cycling of the GPS sensor [7],[9],[12].
Without the GPS sensor, the total sensor power overhead
at the Active, Idle and Sleep states becomes 0.093%, 0.39%,
and 20.6%.

Even though the continuous operation of the hardware
sensors comes at a low power overhead, the process of ac-
cessing and processing sensor data on current state-of-the-
art phones is extremely expensive. The reason is that for
every sensor sample acquired by the phone, the main pro-
cessor and associated components have to be active, creat-
ing a large energy overhead. To better illustrate the impact
of continuous sensing on the battery life of current phones,
consider an example application where the accelerometer on
the phone is continuously sampled at a fixed frequency to
perform a variety of tasks such as user activity recognition,
dead reckoning-based indoor navigation, and step counting
(pedometer) [5, 11, 4]. Figure 1(a) shows the power con-
sumption of an HTC Touch pro phone while sampling the
built-in accelerometer at the rate of 50 samples per second.
When sampling the accelerometer, the overall power con-
sumption of the phone jumps to approximately 756mW com-
pared to the 7.56mW and 399mW of power consumption of
the phone in the Sleep and Idle states respectively. This
increase in power consumption is due to the fact that the
CPU of the phone has to be active in order to acquire and
store each accelerometer sample. In practice, this means
that when sampling the sensors, the phone has to consume
approximately 756mW, which is two orders of magnitude
higher than the power consumed by the phone in the Sleep
state.

Besides increasing the power consumption due to sam-
pling, continuous sensing introduces another major bottle-
neck by essentially preventing the phone from moving to its
Sleep state. The reason can be clearly seen in Figure 1(b),
which shows the power trace for waking up and putting a
phone into sleep. The phone needs approximately 900ms to
move to and 270ms to exit from the Sleep state. As a result,
a full transition between the phone’s Sleep and Idle states
takes more than a second. Because of this overhead, even
when continuous sampling is required at a very low sam-
pling rate, such as 2 samples per second, the phone does not
have enough time to transition to and recover from the Sleep
state and still acquire the next sensor sample on time. As a
result, in order to meet the timing requirements for continu-
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Figure 1: Current drawn from the HTC Touch Pro while (a) sampling the accelerometer at a rate of 50
samples per second and (b) performing a full sleep cycle.
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Figure 2: EERS phone architecture block diagram

ous sensing, the phone has to be Active, consuming approx-
imately 756mW. Given the 1340mAh battery capacity, an
HTC Touch Pro that continuously samples its accelerome-
ter would last for '6.7 hours, ignoring other services such
as phone calls, SMS send/receive, and 3G data traffic. With
these other services, the battery life will reduce even further,
making continuous sampling and processing of sensor data
impractical on current phones.

The goal of EERS is to enable continuous sampling and
processing of sensor data without significantly impacting
phone’s battery life.

3. SYSTEM ARCHITECTURE
To achieve EERS, continuous sampling and, to an extent,

processing sensor data must be decoupled from the appli-
cation processor of the phone. To achieve this, one can in-
troduce a low power microcontroller, or a low power core in
the multi-core processor to manage the sensors. This low
power microcontroller or the processor core enables most
parts of the phone to enter a low power sleep state, while
the low-power sensor processor is continuously sampling and
processing sensor data at a low-power overhead.

Figure 2 shows the block diagram of the proposed sensing
architecture. In this architecture, various low-power ana-
log and digital sensors are attached to a sensor processor.
The sensor processor is typically a low-power microcontroller
that consists of a CPU, RAM, ROM, and various peripherals
such as serial communication buses. The sensor processor
is interfaced to the main phone processor using a serial bus
and multiple control signals.

3.1 EERS Architecture Features

We highlight the following benefits of introducing a low
power sensing processor in EERS architecture:

Low power operation. Since a low-power processor
with a power consumption similar to that of a typical sen-
sor is used as the sensor processor, waiting during sensor
readings and control does not impose high energy overhead.
For example, the MSP430 family of low-power processors
consumes ' 1mW of power when operating at 1MHz.

Due to the simpler hardware architecture, a low-power
processor can transition between sleep and active modes
within a very short time. For example, the MSP430 class
of processors can switch between the sleep (' 0.01mW) and
active (16MHz clock, ' 20mW) states in <5µs. This short
transition time enables the sensor processor to be heavily
duty cycled to reduce the average power.

Programmable context-aware decision making. EERS
provides a programmable approach to deciding when to wakeup
the main processor based on sensor data. This decision mak-
ing can be customized to meet the demands of the current
user and the set of applications running on the phone. Since
the sensor processor has access to nearly simultaneous read-
ings from multiple sensors, the proposed architecture enables
richer context aware decision making through sensor fusion.

Real time sensing and event handling. A typical mi-
crocontroller has multiple hardware modules such as coun-
ters, timers, A/D converters, and serial buses that can op-
erate simultaneously. This hardware parallelism and the
typical multi MHz processor clock speeds make it possi-
ble to achieve almost real time response when sampling and
processing sensor data (assuming a light-weight processing
workload).

3.2 Implementation Options
There are three options for introducing the proposed sens-

ing architecture in mobile phones.
Use an existing microcontroller. Phones already have

dedicated microcontrollers implementing specific functions.
One good example is the capacitive touch controller which
interprets various user touch events and communicates to
the main processor using a serial bus. One possible imple-
mentation to enable EERS is to enhance one of these pro-
cessors and attach the sensors to this processor. This can
be a relatively low cost implementation option, since this re-
quires only a simple modification to existing phone platform
architecture.
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Figure 3: (a) The LittleRock prototype (b) The Lit-
tleRock prototype attached to the back of a phone.

Add a microcontroller. In this option, a dedicated
low-power microcontroller is added to the phone. This op-
tion increases the total number of components on the phone.
This is likely to be the most costly option out of the 3 men-
tioned here. However, given most low-power processors are
relatively inexpensive (<$1) in typical cellphone volumes,
the new application modalities enabled by EERS are likely
to offset this additional cost.

Add a low-power core. This option adds a low-power
core to the phone’s main processor. This is likely to be the
least cost option, since incremental cost of adding a simple,
low-power core on to the phone’s main processor is likely
to be very small. However, this option is not likely to be
the first option adopted by phone manufacturers, since this
requires changes to the phone’s main processor itself.

4. PROTOTYPE
We prototyped and evaluated the EERS sensing archi-

tecture using LittleRock, a prototype hardware platform
consisting of multiple sensors and a low-power processor
that interfaces directly to the main processor of a proto-
type phone. The main goals of this prototype were to ex-
periment with various context-aware applications that can
benefit from EERS, and to evaluate the energy overhead due
to the proposed sensing architecture.

Our prototype connects to the phone using a wired in-
terface. The resulting platform has a form factor similar
to that of a typical mobile phone, enabling us to conduct
various user studies on various EERS-enabled applications.
This section describes the details of LittleRock prototype.

LittleRock consists of four functional modules: the pro-
cessor, digital sensor, analog sensor, and the phone interface.

The processor module consists of an MSP430F5438
processor with 16kB RAM and 256kB flash memory. The
processor can be clocked up to 18MHz. This processor also
has a large number of parallel and serial inputs and out-
puts, making it possible to attach additional sensors than
those already built in to our prototype. This prototype also
has a smaller MSP430 processor (MSP430F2013) for on de-
mand reprogramming of the MSP430F5438 processor. The

Batch size Power
Phone LittleRock Hybrid

10 693 0.21 702
50 693 0.21 171
100 693 0.21 90
500 693 0.20 25

Table 2: Average power required to acquire and pro-
cess 500 samples at a 10Hz sampling rate at different
processing batch sizes

processor module also contains an 8MB flash storage.
The digital sensor module contains a temperature sen-

sor, a 3-axis accelerometer, a barometer, and a 3-axis com-
pass module connected to the main processor through an
I2C bus.

The analog sensor module consists of sensors that have
analog outputs. In particular, this module contains an X-
Y axis gyroscope and a Z axis gyroscope that collectively
provide 3-axis gyroscopic data. To reduce the impact due to
processor generated digital noise, and to provide better reso-
lution than what is possible with the built in A/D converter
of the processor, we used 3 external 16 bit A/D converters
to digitize the gyroscope outputs.

The phone interface consists of a wired connection be-
tween LittleRock and the expansion connector on a proto-
type phone. LittleRock and the phone communicate over
a 4 wire SPI bus. LittleRock is directly powered from the
phone’s battery, through the expansion connector. The phone’s
IO voltage exposed by this connector indicates if the phone
is powered on or off. A GPIO pin enables LittleRock to
interrupt and wake up the main processor.

5. EVALUATION
In this section we evaluate the performance of a pedome-

ter application that counts user steps based on periodic ac-
celerometer samples. A pedometer is a classic application
that benefits from EERS, where the accelerometer has to be
continuously sampled even when the phone is in sleep mode.

The pedometer application samples a 3-axis accelerometer
at 10 Hz, after collecting a batch of n samples, it examines
the magnitude variation of acceleration to detect user step
events. We evaluate the energy consumption of a pedometer
application under three different configurations: running on
the phone, running on LittleRock, and running on a hybrid
of phone and LittleRock. In the hybrid approach LittleRock
buffers the batch of n samples and sends them to the phone
for updating the step count.

Table 2 shows the average power consumption of the three
different hardware configurations. The column under“Phone”
is the most energy inefficient configuration since it consumes
' 700mW. Note that this number does not change with the
processing batch size, since at the 10Hz sampling rate, the
phone continues to be in the active state due to the large
sleep transition time.

The LittleRock only configuration consumes ' 0.2mW.
This corresponds to more than 3 orders of magnitude im-
provement in the power consumption compared to the phone
only configuration. Unlike the phone, the low-power proces-
sor on LittleRock can transition to sleep mode almost in-
stantly. This, combined with the lower power consumption
of the processor, reduces the overall power overhead in Lit-



tleRock configuration. Note that, in this configuration, the
power consumption reduces slightly with larger batch sizes
due to the amortization of fixed processing overhead over a
larger batch of data.

Table 2 also shows that the hybrid approach can be signif-
icantly energy efficient for large batch sizes. This is because
larger batch sizes enables the phone to spend more time in
the sleep mode, while LittleRock is sampling and buffering
sensor data.

6. RESEARCH CHALLENGES
The proposed architecture for enabling EERS fundamen-

tally changes how applications interact with sensors. This
brings additional systems challenges.

Sensor processor selection. In the proposed architec-
ture, sampling and processing of sensor data is offloaded to
a sensor processor or a sensor processor core. However, de-
termining how much processing capability and functionality
the sensor processor should possess is a challenge.

If the sensor processor does not have enough processing ca-
pability, the main processor has to be woken up more often,
resulting in high energy consumption. On the other hand,
too much functionality in the sensor processor increases the
processor sleep currents and wakeup times, and thus the av-
erage power. Consequently, the processor selection requires
a careful evaluation of the anticipated resource requirements.

Sensor processor resource management. The sensor
processor samples and processes sensor data on behalf of
multiple user applications. This can result in multiple user
applications competing for resources on the sensor processor.
Such competing applications raise two challenges.

The first challenge is ensuring fair sharing of sensor proces-
sor resources among multiple applications. The second chal-
lenge is preventing applications from overloading the sensor
processor, which can lead to unpredictable behaviors due to
effects such as stack overflows. To address these concerns,
the sensor processor needs to employ strict resource count-
ing and management of its memory, processing, and energy
resources.

Sensor API. The user applications access the sensor
sampling and processing services of the sensor processor
through a sensor API. This API should be flexible enough to
access multiple services provided by a generic programmable
processor, while being simple enough for application devel-
opers to use this API without spending too much effort.

Application partitioning. Under the proposed archi-
tecture, an application that uses sensor data spans across
the sensor processor and the main processor. With this, an
application developer needs to decide how to partition an
application across these processors. Offloading too little to
the sensor processor results in spending too much energy on
the main processor, while offloading too much can overbur-
den the sensor processor. Enabling application developers
to make the best decision on how to partition an application
will require support for fine-grained application profiling.

7. CONCLUSION
This paper focuses on Responsive Sleeping, where data

from multiple sensors attached to the phone are continuously
sampled and processed, even when the phone appears to be
in the sleep mode. RS is an advanced feature that enables
novel user interface, participatory sensing, and health and

fitness applications.
Through detailed measurements we show that the current

phone architecture, where all sensors are directly controlled
by the phone processor, cannot meet the battery lifetime
requirements for RS.

Based on these results, we propose a new phone sensing
architecture for energy efficient responsive sleeping (EERS)
on phones, where the sampling and processing of sensor data
is offloaded to a low-power sensor processor. Using a step
counting application running on the LittleRock prototype,
we show that the proposed sensing architecture enables en-
ergy efficient Responsive Sleeping on phones.
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