
ContextDroid: an Expression-Based Context Framework
for Android

Bart van Wissen, Nicholas Palmer, Roelof Kemp, Thilo Kielmann and Henri Bal
Vrije Universiteit

De Boelelaan 1081A
Amsterdam, The Netherlands

{bvwissen, palmer, rkemp, kielmann, bal}@cs.vu.nl

Application Purpose Context
Always Prompt notify when to leave calendar, location

SongDNA song recognition sound

Hoccer information exchange location, movement

Screebl power saving movement, orientation

PhotoShoot [3] duel game movement, orientation

iNap notify when close location

to destination

Table 1: Context Aware Applications Seen in ADC2

ABSTRACT
In this paper we describe our work on ContextDroid, a
framework for Context Aware applications on Android pow-
ered smartphones. This framework is designed to provide
application developers with the services required to easily
build Context Aware applications with an eye towards re-
ducing energy consumption of context monitoring, especially
as multiple context aware applications are run on the same
device.

1. INTRODUCTION
We are currently living in the Information Age, an era

characterized by an abundance of information and the pres-
ence of many technological devices interacting with this in-
formation. One of these devices, the smartphone, is of par-
ticular interest for personal context information.

Where the first generation phones, were only equipped
with radios for communication, modern smartphones have
many sensors. They can, for instance, sense location, nearby
devices, movement of the phone using an accelerometer and/or
gyroscope, proximity to the users skin, and even compass
orientation. These devices are often used to store personal
information such as contacts and calendar information, but
they can also be used to retrieve information from web ser-
vices such as weather, traffic, and news services as well as
run advanced applications.

Due to the opening of centralized markets, we have seen
an explosion in the number of third party applications for
smartphones. A similar rise on smaller scale occurred for ap-
plications that take advantage of context information avail-
able on the phone in order to make the phone behave in a
smarter way. In Table 1 we list applications that use context
information which participated in the recent Android Devel-
opers Challenge for innovative smartphone applications.

Although we see an increase in the number of context
aware applications, writing such applications can be a com-
plex task, especially when the information comes from many
different types of sensors, each with their own unique pro-
gramming interface.

Furthermore, when multiple context aware applications
are used in combination, it is likely that more than one will
monitor the same sensors. This can result in highly ineffi-
cient use of the device’s resources as duplicate analysis of
sensor data can not be combined. If programmers would
use an easy to program centralized framework for this, they
would not only save development time and be able to develop
more interesting applications, but in addition the phone’s
resources could be used more efficiently, resulting in longer
battery life for the user.

In this paper we discuss which properties are required for
such a framework, and present our ongoing work on the de-
sign and implementation of ContextDroid a Context Frame-
work running on the Android platform.

The contributions of this paper are:
• We show that there is a need for a Context Framework

to ease programming of context aware applications and
reduce inefficient use of resources

• We present the requirements for a Context Framework
for smartphones

• We present the design and implementation of Con-
textDroid, a Context Framework that fulfills the nec-
essary requirements.

• We demonstrate this framework with a simple baby-
monitor application

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the requirements for a Context Frame-
work derived from our analysis of the problem. In Section
3 we describe the design of ContextDroid in a bottom-up
fashion, starting from the sensor and ending at context ex-
pressions. Section 4 goes into detail about important aspects
or our implementation. We then demonstrate ContextDroid
with an application that can be used to monitor a sleep-
ing baby in Section 5 and conclude by giving an overview
of related work in Section 6, future work in Section 7 and
conclusions in Section 8.

2. REQUIREMENTS
In our research project, called Interdroid, we strive to-

wards creating an environment for smartphones in which
truly smart (possibly distributed) applications can easily be
constructed. We believe that smart usage of context in-
formation is of key importance for next generation smart
applications. Ideally such a smart application will automat-
ically adapt its behavior towards the actual context of the
smartphone and its user. For instance, during an impor-
tant meeting incoming phone calls should be directly sent
to voicemail without ringing, but if a user’s partner calls
three times in a row, there might be something even more



important and then the phone should notify the user. As an-
other example, when close to the supermarket during open-
ing hours, the shopping list application should inform you
that you have to buy milk. However, it should not do so if
you have a meeting scheduled for which you, according to
your location, have to hurry to be on time.

Today, when application programmers write such an ap-
plication, they have to use the available programming inter-
faces of the platform to access several context sensors. Ac-
cessing the position information from the GPS is totally dif-
ferent from looking into the calendar, or getting the current
sound level. For each and every situation the programmer
has to write a new – possibly complex – piece of code that
will get the desired context information. They also have to
write the logic which will allow them to combine these pieces
of information into smart behaviors.

We believe that a generic framework for the gathering
and evaluation of context information will greatly reduce
development time for such applications, but only if it meets
the following requirements:

• Usable: The system has to provide a framework that
enables application developers to very easily make their
applications context-aware, even if context-awareness
is not the main point of their application. Access to
different context elements should be uniform.

• Efficient : Running on portable devices with limited
battery-life means that attention to energy consump-
tion has to be paid from the beginning.

• Extensible: Writing intelligent context-knowledge gath-
ering routines is a complex task that is best left to pro-
grammers that have specific knowledge of the sensors.
Thus the system should enable third party program-
mers to easily add components to the system.

• Portable: Software built using the framework has to
be usable on a large number of devices.

3. DESIGN
In this section we describe the different elements of our

context framework, ContextDroid, which meets the afore-
mentioned requirements. We explain the design of our con-
text framework beginning with our model of context infor-
mation, and continuing with how we gather this information,
and then how expressions can be formed around them and
finally to how those expressions will be evaluated. We also
detail how ContextDroid deals with energy usage and Qual-
ity of Service through service level requests and how these
mechanisms can be extended.

3.1 Context Entities
The devices context, as known to ContextDroid, consists

of context entities. A context entity is a collection of infor-
mation. For example, the user’s current location, expressed
in latitude, longitude, and altitude, is a context entity. The
current state of that entity is determined by context sen-
sors. Context sensors are programs that gather information
from a particular source (hardware sensors, internal mem-
ory, files, the internet) and deliver it as a context entity to
ContextDroid.

We split context entities into two categories:

• synchronous entities, the state of which can be read in
real time. Example: the current time.

• asynchronous entities, the state of which is ’pushed’
into the system. The service then saves this state in

a history so that applications can obtain the state of
such an entity at a certain point in time.

The state of an entity may be unknown at any time, at which
point its value will be null.

3.2 Context Entity Readings
We call the state of a context entity during a certain pe-

riod in time a context entity reading. A reading consists
of a value that represents the state of the entity, a times-
tamp, and a time of expiration. The reading is valid from
its timestamp up to its time of expiration. A new reading ef-
fectively invalidates and replaces the previous reading from
the timestamp of the new reading, even though the previous
reading’s expiration time may indicate that it is still valid.

This approach was chosen because the system may not
always be able to provide new readings in time. Readings
must thus have an expiry time, which can be chosen by
the sensor providing the reading. Highly dynamic context
entities will in general have a shorter time of validity than
context entities that hardly ever change.

3.3 Context Conditions
Typically an application designer does not want to use

the raw context entity readings, but rather wants to eval-
uate them according to a function with application specific
parameters. For instance the raw location is of much less
interest to a developer than the evaluation of whether the
distance to the supermarket is less than 50 meters. There-
fore, in order to make programming easy, our framework
provides context conditions.

A context condition is defined by a boolean evaluator
function, a number of constant parameters for the evalu-
ator function and a description of what context information
should be used as input.

Evaluator functions are functions which take one vari-
able and a number of constants as arguments and return
a boolean value. To formalize this, we designed an object
called EvaluatorInputSelector. This object contains settings
that together define which value should be passed to the
evaluator function. Those settings are:

• a Context Entity identifier
• a “value path” describing which part of the entity to

take in case it is a complex value (see below)
• a time span
• a selection mode

The context entity identifier uniquely identifies the context
entity.

3.3.1 Value Path
Some context entities have values that are actually a set

of key/value-pairs, or a list of values, or even a list of sets
of key/value pairs. We may want an evaluator function to
use a part of that complex data structure as input to the
evaluation, for instance we may only be interested in the
altitude from the GPS sensor, so we need a way to describe
which part of a given entity an expression is needed. For
this, we use a path-string, which allows regular expression
like selections of parts of values. For brevity we don’t go
into details of the selection mechanism.

3.3.2 Time Span
The time span specifies a window in the history of the

state of the context entity. The effect of this window depends
on the mode, but in general it determines how much history
to take into account when evaluating the condition.



3.3.3 Selection Mode
The selection mode can be one of the following:
• ANY: The condition is true if the evaluator returns

true for any of the values inside the window.
• MEAN: The condition is true if the evaluator returns

true for the mean value calculated over the values in-
side the window. This can only be used for numeric
values.

• MAXIMUM: The condition is true if the evaluator re-
turns true for the highest value inside the window.
This can only be used for values that implement the
Comparable interface.

• MINIMUM: Like the former, but with the lowest value
instead of the highest.

• ALL: The condition is true if the evaluator returns true
for all values currently inside the window.

3.4 Evaluating a Context Condition
Evaluating a context condition consists of the following

steps. First a part is selected out of a context entity’s his-
tory. Then, from every reading inside this history, one or
more atomic values are selected. Depending on the mode,
in case of ANY, all values are passed to a evaluator in re-
verse order (latest first) until one value is found for which
it returns true, or in case of MINIMUM, MAXIMUM or
MEAN, first a value is calculated and then it is passed to
the evaluator.

The settings of the EvaluatorInputSelector can have a big
impact on performance. When no history is used, only one
value has to be evaluated, and it only has to be done when-
ever a new value comes in, making the condition very cheap
to evaluate. On the other hand, when the time span is very
long, the number of readings inside it is high, and a mode
like MINIMUM or MEAN is used, evaluating the condition
can become a time- and energy consuming operation.

We apply several evaluation strategies to optimize the
evaluation. When mode ANY is used, if the evaluator re-
turns true for a value that just entered the window, we can
be sure that it will be true for as long as the value is inside
the window. We can calculate at what moment it will move
out of the window, and make sure that we do not evaluate
before that moment.

When mode MINIMUM is used, we only have to re-evaluate
when the latest minimum value moves out of the window,
or when a new value enters the window that is lower than
the last one.

A similar optimization can be done for MAXIMUM. The
most problematic mode is MEAN, because it changes con-
tinuously, even when no new values come in. Since we can-
not evaluate it continuously, we chose to automatically re-
evaluate it when no new value has come in for a certain
period.

3.5 Evaluators
The evaluator is a simple interface with one method named

evaluate, which takes a variable number of parameters. Con-
textDroid includes a number of predefined evaluators. A few
of these are:

• ==, >=, >, <, <=: These evaluators act as their
names imply. They all take two arguments and com-
pare them.

• regexp: This evaluator takes a string and a pattern as
arguments and returns true if the string matches the
pattern.

• distance within: This evaluator takes two pairs of co-
ordinates and a radius as arguments, and returns true
if the distance between the two pairs of coordinates
is less than the specified radius. This can be used to
create “proximity alert” style conditions.

3.6 Expressions
In order to provide a way for applications to react to cer-

tain conditions in the context, as mentioned in the require-
ments, applications should be able to describe that set of
conditions to the service in a formal way. For this, our
framework uses context expressions. A context expression
is a boolean expression in which the axioms are the context
conditions on context entities.

Since most conditions are a combination of several sub-
conditions, we need a way to combine conditions into ex-
pressions. We have chosen to use a tree structure because
every logical formula can be expressed as a tree. In such
a tree, a conjunction is an AND node with two children, a
disjunction is an OR node with two children, and a NOT
node has only one child whose result is inverted. The leaf
nodes are the atoms, which are specific context conditions.

In addition to being expressive and intuitive to use the
tree structure also adds the possibility of short-circuit eval-
uation. In an expression A OR B, evaluation of B can be
skipped as long as A is true. Future work with our frame-
work will include optimizing such short circuiting based on
energy consumption to minimize the energy consumption of
evaluating the total framework, for instance by turning off
high energy consumption sensors such as the gps when in
conjunction with a low energy sensor such as time.

3.7 Quality of Service: Service Level Requests
Different applications may have different demands in terms

of information that has to be available. One application may
be dependent on an entity which is highly dynamic, such as
the microphone level, and may want to react to changes
quickly. Another application may only want to check peri-
odically if some WiFi network is available.

Because battery life is limited, mobile operating systems
are designed to put the phone into a sleep mode whenever
possible. To perform any readings for our context service
however, the phone has to be awake. Our background service
should thus ideally not perform any readings when they are
not really necessary.

Thus, we decided to have the applications tell the service
the minimum service level that they require to operate cor-
rectly. They do this by issuing a service level request. In
principle, an application can request any service level, but
no guarantees are given by the service. The service will de-
liver a best effort that matches the requested service level
as closely as possible. A service level consists of a list of
context entities, each with a number of parameters. These
parameters include:

• whether or not the entity’s sensor has to be active
• the minimum frequency at which readings of that en-

tity should be performed
• the amount of history that should be kept
• entity-specific requirements

Upon receipt of a service level request, the service adjusts its
settings according to the request. When multiple applica-
tions issue service level requests, for each setting the “high-
est” setting is chosen. All those highest settings together
form the composite service level. Consequently, whenever



developerContextDroid framework

sensor context
service

app

co
n
te

x
t

m
a
n
a
g
e
r3

2
1

4

Figure 1: Overall ContextDroid Structure. Each
dashed box is a separate process. Service requests
are passed from the application using the manager
to the service (1) and forwarded to the subsequent
sensor (2) via IPC. Sensors push readings back to
the service (3), which evaluates them and notifies
the application if needed via a broadcast (4).

a request is cancelled, the service level is restored to the
highest level without that request.

3.8 Extensibility
It is very important that the default set of available con-

text information made available by our system is easy to
extend with new entities. To create a new context entity,
basically two conditions must be fulfilled:

• The entity itself must be declared, giving it an identi-
fier and a data type.

• A sensor must be implemented to provide readings for
that entity.

Note that a single sensor can (and in most cases will) ac-
tually provide readings for multiple related entities. Imple-
menting a new entity may thus also mean adding its imple-
mentation to an existing sensor, provided the developer has
access to its source code.

4. IMPLEMENTATION
Now that we have seen the design of the expression based

context framework ContextDroid, we turn our attention to
the implementation. We selected the open source Android
mobile platform as target platform for our implementation.
Android has several application components that match well
with the requirements and design of ContextDroid. An-
droid allows for long running background processes (ser-
vices) which fit particularly well for both the Sensors and
the ContextManager, a feature unavailable on the popular
iPhone platform.

Figure 1 shows the different components of ContextDroid’s
implementation. A client-service architecture was chosen to
enable efficient sharing of knowledge between multiple ap-
plications that run simultaneously.

Android’s AIDL interfaces have been used to enable trans-
portation of objects in so-called parcels between client and
server. The application is linked with ContextManager, a
helper class that facilitates communication between the ap-
plication and the ContextDroid service. The ContextMan-
ager sets up a connection to the service interface, sends ser-
vice level requests and installs listeners to receive broadcasts
from the server.

The service launches and maintains connections to the
Sensors, which are in themselves Android services with their
own interfaces. Sensors connect back to the ContextDroid
service to ’push’ context knowledge, which effectively makes
a two-way binding between a sensor and the ContextDroid
service.

The ContextDroid service provides the applications with
context knowledge by means of Broadcast Intents. Broad-
cast intents are Android’s way of broadcasting information
to applications system-wide. New readings as well as ex-
pressions of state-transitions are broadcast this way.

4.1 The ContextService
The ContextService is the heart of the Context Frame-

work. Its main responsibilities include:
• maintain a shared knowledge base of context informa-

tion
• process updates to the context information provided

by Context Sensors
• provide an interface and act as a mediator between ap-

plications, the context knowledge base and the service
level manager

The context service maintains a history of readings for a
specific context entity. The amount of history is set by the
Service Level and can be changed dynamically.

The service level manager is also included in the context
service and creates a composite service level request out of
a list of service level requests. New requests can be put into
the data structure, and they can be canceled using their
unique id.

4.2 Expression Engine
The evaluation of a context expression can be triggered as

a result of two types of events:
• One of the expression’s context entities changes value
• The evaluation is triggered by the scheduler

The first type is implemented as a simple observer pat-
tern. When an expression is added, a list is made of all the
entities it depends on, and the root of the expression tree
is subscribed to all those entities. Whenever a new reading
comes in for any of those entities, re-evaluation of the entire
expression tree is requested asynchronously.

The second type is implemented by using Android’s Alar-
mManager. The alarm manager makes sure that the device
wakes up whenever an alarm is scheduled, if it is in sleep
mode. The evaluation scheduling system also uses asyn-
chronous evaluation requests.

The asynchronous approach was chosen because it pre-
vents blocking in situations where one event triggers the
evaluation of an expression that is already being evaluated
at that moment.

We use a top down approach for evaluating tree expres-
sions. That is, whenever any of the Context Entities that
any of the tree’s leaf nodes depend on change, the whole
tree is re-evaluated in a top-down order. We use this ap-
proach because it is relatively simple to implement short-
circuit evaluation. When evaluating an AND node, for ex-
ample, the right operand only has to be evaluated if the left
operand is true. Even though “A AND B” is the same as “B
AND A” from a logical point of view, the programmer can
optimize the energy- and time consumption of the expression
by considering the order of the operands.

5. EXAMPLE: BABY MONITOR
To illustrate the use of ContextDroid we created a context

aware application, which allows a smartphone to be used as
a baby monitor. The phone will monitor the sound level
and when a certain threshold is passed the application can
notify another phone by calling, texting or even mailing a
small video clip (see Figure 2).

The code excerpt in Figure 3 shows the lines in the appli-
cation that deal with the context.



Figure 2: Screenshot of the Baby Monitor App

manager = new ContextManager(this, new ContextManagerListener() {
// connected with service
public void onConnected() {

// look at the minimum sound level over the last time period (15 s)
selector = new EvaluatorInputSelector(”sound.level rms”, MINIMUM,

timeThreshold);
// check the sound level against this threshold (−6.38 dB)
parameters.putDouble(”value”, soundLevelTreshold);
// and evaluate whether it's greater than or equal to it
condition = new ContextCondition(”>=”, parameters, selector);
// add the condition to the manager
manager.addContextExpression(condition, ”baby”, serviceLevelRequest);
// and if it evaluates to true, notify another phone
manager.registerContextListener(”baby”, new ContextListener() {

public void onTrue(String expressionId) {
notifyAnotherPhone();

}
});

}
});

Figure 3: Code Example of Baby Monitor App

6. RELATED WORK
A project similar to ContextDroid is Context Weaver [1],

which was developed at IBM in 2004. It is a platform that
simplifies writing of context-aware applications. It lets ap-
plications access context information through a simple, uni-
form interface. Applications access data not by naming the
provider of the data, but by describing the kind of data
they need, after which the system will respond with a suit-
able provider. An important aspect of Context Weaver is
that when a provider fails, Context Weaver automatically
tries to find another provider of the same kind of data.

Context Weaver only considers current values of context,
whereas ContextDroid includes historic information and adds
expiration times to values, which results in more accurate
context data. Furthermore, ContextDroid has specifically
been designed for mobile platforms and takes energy usage
into account, while to our knowledge there are no reports of
Context Weaver running on mobile platforms.

WildCAT [2] is a Java toolkit/framework whose goal is
the same as ContextDroid’s: to ease the creation of context-
aware applications for application-programmers. WildCAT
too offers an API for programmers to access context infor-
mation both synchronously and asynchronously. WildCAT
uses a string based expression model, which is largely equiv-
alent to ContextDroid’s expression model.

WildCAT does not offer any means of service level man-
agement such as ContextDroid does. And although Wild-
CAT is written in Java and in theory could be easily ported
to mobile devices, it has not been designed especially for mo-
bile platforms and for instance the lack of service level man-

agement makes it less suitable for mobile platforms, since
efficiently handling the devices resources is of key impor-
tance on mobile platforms.

FRAP [4] is another context framework targeted at the
construction of pervasive (multi-player) games. In FRAP, a
central server keeps track of all context information of the
clients, which have to be connected to the server. FRAP
uses WildCAT2 [2] to store context information and thus is
also not appropriate for mobile platforms.

7. FUTURE WORK
Our future work with the framework will involve further

evaluating and optimizing the energy consumption of the
framework. We also intend to look further at usability and
extensibility through the construction of more context aware
applications. We will also add support for distributed con-
text expressions which run over multiple devices in order to
enable distributed context applications. For instance a user
may request to be notified to initiate a call when both they
and their partner are not in meetings. Finally, we intend to
explore context policy enforcement with our framework.

8. CONCLUSIONS
In this paper we have presented ContextDroid, a frame-

work that eases the development of context aware applica-
tions for smartphones. We designed and implemented Con-
textDroid based on the requirements for a context frame-
work targeted at smartphones: usable, efficient, extensible
and portable.

ContextDroid offers a simple, uniform and intuitive way
for applications to register context expressions. Due to the
centralized setup ContextDroid integrates multiple context
expressions and computes a composite service level, such
that multiple application requirements are met with the low-
est pressure on the device’s resources.

We have evaluated the ContextDroid framework with a
real world smartphone application.

9. REFERENCES
[1] N. Cohen et al. Building Context-Aware Applications with

Context Weaver. IBM Research Division, TJ Watson
Research Center, 2004.

[2] P.-C. David and T. Ledoux. Wildcat: a generic framework
for context-aware applications. In MPAC ’05: Proceedings of
the 3rd international workshop on Middleware for pervasive
and ad-hoc computing, pages 1–7, 2005.

[3] R. Kemp, N. Palmer, T. Kielmann, and H. Bal.
Opportunistic Communication for Multiplayer Mobile
Gaming: Lessons Learned from PhotoShoot. In MobiOpp
’10: Proceedings of the Second International Workshop on
Mobile Opportunistic Networking, pages 182–184, 2010.

[4] J.-P. Tutzschke and O. Zukunft. Frap: a framework for
pervasive games. In EICS ’09: Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive computing
systems, pages 133–142, 2009.


