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Application Purpose Context
Always Prompt notify when to leave calendar, location

SongDNA song recognition sound

Hoccer information exchange location, movement

Screebl power saving movement, orientation

PhotoShoot [3] duel game movement, orientation

iNap notify when close location

to destination

Table 1: Context Aware Applications Seen in ADC2

ABSTRACT
In this paper we describe our work on ContextDroid, a
framework for Context Aware applications on Android pow-
ered smartphones. This framework is designed to provide
application developers with the services required to easily
build Context Aware applications with an eye towards re-
ducing energy consumption of context monitoring, especially
as multiple context aware applications are run on the same
device.

1. INTRODUCTION
We are currently living in the Information Age, an era

characterized by an abundance of information and the pres-
ence of many technological devices interacting with this in-
formation. One of these devices, the smartphone, is of par-
ticular interest for personal context information.

Where the first generation phones, were only equipped
with radios for communication, modern smartphones have
many sensors. They can, for instance, sense location, nearby
devices, movement of the phone using an accelerometer and/or
gyroscope, proximity to the users skin, and even compass
orientation. These devices are often used to store personal
information such as contacts and calendar information, but
they can also be used to retrieve information from web ser-
vices such as weather, traffic, and news services as well as
run advanced applications.

Due to the opening of centralized markets, we have seen
an explosion in the number of third party applications for
smartphones. A similar rise on smaller scale occurred for ap-
plications that take advantage of context information avail-
able on the phone in order to make the phone behave in a
smarter way. In Table 1 we list applications that use context
information which participated in the recent Android Devel-
opers Challenge for innovative smartphone applications.

Although we see an increase in the number of context
aware applications, writing such applications can be a com-
plex task, especially when the information comes from many
different types of sensors, each with their own unique pro-
gramming interface.

Furthermore, when multiple context aware applications
are used in combination, it is likely that more than one will
monitor the same sensors. This can result in highly ineffi-
cient use of the device’s resources as duplicate analysis of
sensor data can not be combined. If programmers would
use an easy to program centralized framework for this, they
would not only save development time and be able to develop
more interesting applications, but in addition the phone’s
resources could be used more efficiently, resulting in longer
battery life for the user.

In this paper we discuss which properties are required for
such a framework, and present our ongoing work on the de-
sign and implementation of ContextDroid a Context Frame-
work running on the Android platform.

The contributions of this paper are:
• We show that there is a need for a Context Framework

to ease programming of context aware applications and
reduce inefficient use of resources

• We present the requirements for a Context Framework
for smartphones

• We present the design and implementation of Con-
textDroid, a Context Framework that fulfills the nec-
essary requirements.

• We demonstrate this framework with a simple baby-
monitor application

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the requirements for a Context Frame-
work derived from our analysis of the problem. In Section
3 we describe the design of ContextDroid in a bottom-up
fashion, starting from the sensor and ending at context ex-
pressions. Section 4 goes into detail about important aspects
or our implementation. We then demonstrate ContextDroid
with an application that can be used to monitor a sleep-
ing baby in Section 5 and conclude by giving an overview
of related work in Section 6, future work in Section 7 and
conclusions in Section 8.

2. REQUIREMENTS
In our research project, called Interdroid, we strive to-

wards creating an environment for smartphones in which
truly smart (possibly distributed) applications can easily be
constructed. We believe that smart usage of context in-
formation is of key importance for next generation smart
applications. Ideally such a smart application will automat-
ically adapt its behavior towards the actual context of the
smartphone and its user. For instance, during an impor-
tant meeting incoming phone calls should be directly sent
to voicemail without ringing, but if a user’s partner calls
three times in a row, there might be something even more
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important and then the phone should notify the user. As an-
other example, when close to the supermarket during open-
ing hours, the shopping list application should inform you
that you have to buy milk. However, it should not do so if
you have a meeting scheduled for which you, according to
your location, have to hurry to be on time.

Today, when application programmers write such an ap-
plication, they have to use the available programming inter-
faces of the platform to access several context sensors. Ac-
cessing the position information from the GPS is totally dif-
ferent from looking into the calendar, or getting the current
sound level. For each and every situation the programmer
has to write a new – possibly complex – piece of code that
will get the desired context information. They also have to
write the logic which will allow them to combine these pieces
of information into smart behaviors.

We believe that a generic framework for the gathering
and evaluation of context information will greatly reduce
development time for such applications, but only if it meets
the following requirements:

• Usable: The system has to provide a framework that
enables application developers to very easily make their
applications context-aware, even if context-awareness
is not the main point of their application. Access to
different context elements should be uniform.

• Efficient : Running on portable devices with limited
battery-life means that attention to energy consump-
tion has to be paid from the beginning.

• Extensible: Writing intelligent context-knowledge gath-
ering routines is a complex task that is best left to pro-
grammers that have specific knowledge of the sensors.
Thus the system should enable third party program-
mers to easily add components to the system.

• Portable: Software built using the framework has to
be usable on a large number of devices.

3. DESIGN
In this section we describe the different elements of our

context framework, ContextDroid, which meets the afore-
mentioned requirements. We explain the design of our con-
text framework beginning with our model of context infor-
mation, and continuing with how we gather this information,
and then how expressions can be formed around them and
finally to how those expressions will be evaluated. We also
detail how ContextDroid deals with energy usage and Qual-
ity of Service through service level requests and how these
mechanisms can be extended.

3.1 Context Entities
The devices context, as known to ContextDroid, consists

of context entities. A context entity is a collection of infor-
mation. For example, the user’s current location, expressed
in latitude, longitude, and altitude, is a context entity. The
current state of that entity is determined by context sen-
sors. Context sensors are programs that gather information
from a particular source (hardware sensors, internal mem-
ory, files, the internet) and deliver it as a context entity to
ContextDroid.

We split context entities into two categories:

• synchronous entities, the state of which can be read in
real time. Example: the current time.

• asynchronous entities, the state of which is ’pushed’
into the system. The service then saves this state in

a history so that applications can obtain the state of
such an entity at a certain point in time.

The state of an entity may be unknown at any time, at which
point its value will be null.

3.2 Context Entity Readings
We call the state of a context entity during a certain pe-

riod in time a context entity reading. A reading consists
of a value that represents the state of the entity, a times-
tamp, and a time of expiration. The reading is valid from
its timestamp up to its time of expiration. A new reading ef-
fectively invalidates and replaces the previous reading from
the timestamp of the new reading, even though the previous
reading’s expiration time may indicate that it is still valid.

This approach was chosen because the system may not
always be able to provide new readings in time. Readings
must thus have an expiry time, which can be chosen by
the sensor providing the reading. Highly dynamic context
entities will in general have a shorter time of validity than
context entities that hardly ever change.

3.3 Context Conditions
Typically an application designer does not want to use

the raw context entity readings, but rather wants to eval-
uate them according to a function with application specific
parameters. For instance the raw location is of much less
interest to a developer than the evaluation of whether the
distance to the supermarket is less than 50 meters. There-
fore, in order to make programming easy, our framework
provides context conditions.

A context condition is defined by a boolean evaluator
function, a number of constant parameters for the evalu-
ator function and a description of what context information
should be used as input.

Evaluator functions are functions which take one vari-
able and a number of constants as arguments and return
a boolean value. To formalize this, we designed an object
called EvaluatorInputSelector. This object contains settings
that together define which value should be passed to the
evaluator function. Those settings are:

• a Context Entity identifier
• a “value path” describing which part of the entity to

take in case it is a complex value (see below)
• a time span
• a selection mode

The context entity identifier uniquely identifies the context
entity.

3.3.1 Value Path
Some context entities have values that are actually a set

of key/value-pairs, or a list of values, or even a list of sets
of key/value pairs. We may want an evaluator function to
use a part of that complex data structure as input to the
evaluation, for instance we may only be interested in the
altitude from the GPS sensor, so we need a way to describe
which part of a given entity an expression is needed. For
this, we use a path-string, which allows regular expression
like selections of parts of values. For brevity we don’t go
into details of the selection mechanism.

3.3.2 Time Span
The time span specifies a window in the history of the

state of the context entity. The effect of this window depends
on the mode, but in general it determines how much history
to take into account when evaluating the condition.
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3.3.3 Selection Mode
The selection mode can be one of the following:
• ANY: The condition is true if the evaluator returns

true for any of the values inside the window.
• MEAN: The condition is true if the evaluator returns

true for the mean value calculated over the values in-
side the window. This can only be used for numeric
values.

• MAXIMUM: The condition is true if the evaluator re-
turns true for the highest value inside the window.
This can only be used for values that implement the
Comparable interface.

• MINIMUM: Like the former, but with the lowest value
instead of the highest.

• ALL: The condition is true if the evaluator returns true
for all values currently inside the window.

3.4 Evaluating a Context Condition
Evaluating a context condition consists of the following

steps. First a part is selected out of a context entity’s his-
tory. Then, from every reading inside this history, one or
more atomic values are selected. Depending on the mode,
in case of ANY, all values are passed to a evaluator in re-
verse order (latest first) until one value is found for which
it returns true, or in case of MINIMUM, MAXIMUM or
MEAN, first a value is calculated and then it is passed to
the evaluator.

The settings of the EvaluatorInputSelector can have a big
impact on performance. When no history is used, only one
value has to be evaluated, and it only has to be done when-
ever a new value comes in, making the condition very cheap
to evaluate. On the other hand, when the time span is very
long, the number of readings inside it is high, and a mode
like MINIMUM or MEAN is used, evaluating the condition
can become a time- and energy consuming operation.

We apply several evaluation strategies to optimize the
evaluation. When mode ANY is used, if the evaluator re-
turns true for a value that just entered the window, we can
be sure that it will be true for as long as the value is inside
the window. We can calculate at what moment it will move
out of the window, and make sure that we do not evaluate
before that moment.

When mode MINIMUM is used, we only have to re-evaluate
when the latest minimum value moves out of the window,
or when a new value enters the window that is lower than
the last one.

A similar optimization can be done for MAXIMUM. The
most problematic mode is MEAN, because it changes con-
tinuously, even when no new values come in. Since we can-
not evaluate it continuously, we chose to automatically re-
evaluate it when no new value has come in for a certain
period.

3.5 Evaluators
The evaluator is a simple interface with one method named

evaluate, which takes a variable number of parameters. Con-
textDroid includes a number of predefined evaluators. A few
of these are:

• ==, >=, >, <, <=: These evaluators act as their
names imply. They all take two arguments and com-
pare them.

• regexp: This evaluator takes a string and a pattern as
arguments and returns true if the string matches the
pattern.

• distance within: This evaluator takes two pairs of co-
ordinates and a radius as arguments, and returns true
if the distance between the two pairs of coordinates
is less than the specified radius. This can be used to
create “proximity alert” style conditions.

3.6 Expressions
In order to provide a way for applications to react to cer-

tain conditions in the context, as mentioned in the require-
ments, applications should be able to describe that set of
conditions to the service in a formal way. For this, our
framework uses context expressions. A context expression
is a boolean expression in which the axioms are the context
conditions on context entities.

Since most conditions are a combination of several sub-
conditions, we need a way to combine conditions into ex-
pressions. We have chosen to use a tree structure because
every logical formula can be expressed as a tree. In such
a tree, a conjunction is an AND node with two children, a
disjunction is an OR node with two children, and a NOT
node has only one child whose result is inverted. The leaf
nodes are the atoms, which are specific context conditions.

In addition to being expressive and intuitive to use the
tree structure also adds the possibility of short-circuit eval-
uation. In an expression A OR B, evaluation of B can be
skipped as long as A is true. Future work with our frame-
work will include optimizing such short circuiting based on
energy consumption to minimize the energy consumption of
evaluating the total framework, for instance by turning off
high energy consumption sensors such as the gps when in
conjunction with a low energy sensor such as time.

3.7 Quality of Service: Service Level Requests
Different applications may have different demands in terms

of information that has to be available. One application may
be dependent on an entity which is highly dynamic, such as
the microphone level, and may want to react to changes
quickly. Another application may only want to check peri-
odically if some WiFi network is available.

Because battery life is limited, mobile operating systems
are designed to put the phone into a sleep mode whenever
possible. To perform any readings for our context service
however, the phone has to be awake. Our background service
should thus ideally not perform any readings when they are
not really necessary.

Thus, we decided to have the applications tell the service
the minimum service level that they require to operate cor-
rectly. They do this by issuing a service level request. In
principle, an application can request any service level, but
no guarantees are given by the service. The service will de-
liver a best effort that matches the requested service level
as closely as possible. A service level consists of a list of
context entities, each with a number of parameters. These
parameters include:

• whether or not the entity’s sensor has to be active
• the minimum frequency at which readings of that en-

tity should be performed
• the amount of history that should be kept
• entity-specific requirements

Upon receipt of a service level request, the service adjusts its
settings according to the request. When multiple applica-
tions issue service level requests, for each setting the “high-
est” setting is chosen. All those highest settings together
form the composite service level. Consequently, whenever
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Figure 1: Overall ContextDroid Structure. Each
dashed box is a separate process. Service requests
are passed from the application using the manager
to the service (1) and forwarded to the subsequent
sensor (2) via IPC. Sensors push readings back to
the service (3), which evaluates them and notifies
the application if needed via a broadcast (4).

a request is cancelled, the service level is restored to the
highest level without that request.

3.8 Extensibility
It is very important that the default set of available con-

text information made available by our system is easy to
extend with new entities. To create a new context entity,
basically two conditions must be fulfilled:

• The entity itself must be declared, giving it an identi-
fier and a data type.

• A sensor must be implemented to provide readings for
that entity.

Note that a single sensor can (and in most cases will) ac-
tually provide readings for multiple related entities. Imple-
menting a new entity may thus also mean adding its imple-
mentation to an existing sensor, provided the developer has
access to its source code.

4. IMPLEMENTATION
Now that we have seen the design of the expression based

context framework ContextDroid, we turn our attention to
the implementation. We selected the open source Android
mobile platform as target platform for our implementation.
Android has several application components that match well
with the requirements and design of ContextDroid. An-
droid allows for long running background processes (ser-
vices) which fit particularly well for both the Sensors and
the ContextManager, a feature unavailable on the popular
iPhone platform.

Figure 1 shows the different components of ContextDroid’s
implementation. A client-service architecture was chosen to
enable efficient sharing of knowledge between multiple ap-
plications that run simultaneously.

Android’s AIDL interfaces have been used to enable trans-
portation of objects in so-called parcels between client and
server. The application is linked with ContextManager, a
helper class that facilitates communication between the ap-
plication and the ContextDroid service. The ContextMan-
ager sets up a connection to the service interface, sends ser-
vice level requests and installs listeners to receive broadcasts
from the server.

The service launches and maintains connections to the
Sensors, which are in themselves Android services with their
own interfaces. Sensors connect back to the ContextDroid
service to ’push’ context knowledge, which effectively makes
a two-way binding between a sensor and the ContextDroid
service.

The ContextDroid service provides the applications with
context knowledge by means of Broadcast Intents. Broad-
cast intents are Android’s way of broadcasting information
to applications system-wide. New readings as well as ex-
pressions of state-transitions are broadcast this way.

4.1 The ContextService
The ContextService is the heart of the Context Frame-

work. Its main responsibilities include:
• maintain a shared knowledge base of context informa-

tion
• process updates to the context information provided

by Context Sensors
• provide an interface and act as a mediator between ap-

plications, the context knowledge base and the service
level manager

The context service maintains a history of readings for a
specific context entity. The amount of history is set by the
Service Level and can be changed dynamically.

The service level manager is also included in the context
service and creates a composite service level request out of
a list of service level requests. New requests can be put into
the data structure, and they can be canceled using their
unique id.

4.2 Expression Engine
The evaluation of a context expression can be triggered as

a result of two types of events:
• One of the expression’s context entities changes value
• The evaluation is triggered by the scheduler

The first type is implemented as a simple observer pat-
tern. When an expression is added, a list is made of all the
entities it depends on, and the root of the expression tree
is subscribed to all those entities. Whenever a new reading
comes in for any of those entities, re-evaluation of the entire
expression tree is requested asynchronously.

The second type is implemented by using Android’s Alar-
mManager. The alarm manager makes sure that the device
wakes up whenever an alarm is scheduled, if it is in sleep
mode. The evaluation scheduling system also uses asyn-
chronous evaluation requests.

The asynchronous approach was chosen because it pre-
vents blocking in situations where one event triggers the
evaluation of an expression that is already being evaluated
at that moment.

We use a top down approach for evaluating tree expres-
sions. That is, whenever any of the Context Entities that
any of the tree’s leaf nodes depend on change, the whole
tree is re-evaluated in a top-down order. We use this ap-
proach because it is relatively simple to implement short-
circuit evaluation. When evaluating an AND node, for ex-
ample, the right operand only has to be evaluated if the left
operand is true. Even though “A AND B” is the same as “B
AND A” from a logical point of view, the programmer can
optimize the energy- and time consumption of the expression
by considering the order of the operands.

5. EXAMPLE: BABY MONITOR
To illustrate the use of ContextDroid we created a context

aware application, which allows a smartphone to be used as
a baby monitor. The phone will monitor the sound level
and when a certain threshold is passed the application can
notify another phone by calling, texting or even mailing a
small video clip (see Figure 2).

The code excerpt in Figure 3 shows the lines in the appli-
cation that deal with the context.
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Figure 2: Screenshot of the Baby Monitor App

manager = new ContextManager(this, new ContextManagerListener() {
// connected with service
public void onConnected() {

// look at the minimum sound level over the last time period (15 s)
selector = new EvaluatorInputSelector(”sound.level rms”, MINIMUM,

timeThreshold);
// check the sound level against this threshold (−6.38 dB)
parameters.putDouble(”value”, soundLevelTreshold);
// and evaluate whether it's greater than or equal to it
condition = new ContextCondition(”>=”, parameters, selector);
// add the condition to the manager
manager.addContextExpression(condition, ”baby”, serviceLevelRequest);
// and if it evaluates to true, notify another phone
manager.registerContextListener(”baby”, new ContextListener() {

public void onTrue(String expressionId) {
notifyAnotherPhone();

}
});

}
});

Figure 3: Code Example of Baby Monitor App

6. RELATED WORK
A project similar to ContextDroid is Context Weaver [1],

which was developed at IBM in 2004. It is a platform that
simplifies writing of context-aware applications. It lets ap-
plications access context information through a simple, uni-
form interface. Applications access data not by naming the
provider of the data, but by describing the kind of data
they need, after which the system will respond with a suit-
able provider. An important aspect of Context Weaver is
that when a provider fails, Context Weaver automatically
tries to find another provider of the same kind of data.

Context Weaver only considers current values of context,
whereas ContextDroid includes historic information and adds
expiration times to values, which results in more accurate
context data. Furthermore, ContextDroid has specifically
been designed for mobile platforms and takes energy usage
into account, while to our knowledge there are no reports of
Context Weaver running on mobile platforms.

WildCAT [2] is a Java toolkit/framework whose goal is
the same as ContextDroid’s: to ease the creation of context-
aware applications for application-programmers. WildCAT
too offers an API for programmers to access context infor-
mation both synchronously and asynchronously. WildCAT
uses a string based expression model, which is largely equiv-
alent to ContextDroid’s expression model.

WildCAT does not offer any means of service level man-
agement such as ContextDroid does. And although Wild-
CAT is written in Java and in theory could be easily ported
to mobile devices, it has not been designed especially for mo-
bile platforms and for instance the lack of service level man-

agement makes it less suitable for mobile platforms, since
efficiently handling the devices resources is of key impor-
tance on mobile platforms.

FRAP [4] is another context framework targeted at the
construction of pervasive (multi-player) games. In FRAP, a
central server keeps track of all context information of the
clients, which have to be connected to the server. FRAP
uses WildCAT2 [2] to store context information and thus is
also not appropriate for mobile platforms.

7. FUTURE WORK
Our future work with the framework will involve further

evaluating and optimizing the energy consumption of the
framework. We also intend to look further at usability and
extensibility through the construction of more context aware
applications. We will also add support for distributed con-
text expressions which run over multiple devices in order to
enable distributed context applications. For instance a user
may request to be notified to initiate a call when both they
and their partner are not in meetings. Finally, we intend to
explore context policy enforcement with our framework.

8. CONCLUSIONS
In this paper we have presented ContextDroid, a frame-

work that eases the development of context aware applica-
tions for smartphones. We designed and implemented Con-
textDroid based on the requirements for a context frame-
work targeted at smartphones: usable, efficient, extensible
and portable.

ContextDroid offers a simple, uniform and intuitive way
for applications to register context expressions. Due to the
centralized setup ContextDroid integrates multiple context
expressions and computes a composite service level, such
that multiple application requirements are met with the low-
est pressure on the device’s resources.

We have evaluated the ContextDroid framework with a
real world smartphone application.
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ABSTRACT
Much work has been done in the area of monitoring on
traditional systems, such as servers, workstations and lap-
tops. User and application behavior has also been stud-
ied on a wide range of platforms. Recently, smartphones
have seen a dramatic increase in availability and adoption.
New monitoring tools are needed to handle the unique de-
mands of these mobile devices, such as minimal energy usage
and cellular network activity, and the unique opportunities
they provide, such as incorporating contextual information.
Smartphones include a wide range of sensors which can be
used to provide insights about the context of the activities
being monitored. Individuals also use their mobile phones
in a much different manner than traditional systems, and
these differences have not been fully explored. With a bet-
ter understanding of how these devices are used, and how
common usage patterns impact system performance, we can
improve upon system and application design. In this paper,
we introduce an integrated monitoring framework for mobile
phones which incorporates sensor, system and user activity.
Our expectation is that integrated monitoring solutions will
provide the foundation for various new solutions.

1. INTRODUCTION
The rapid increase in smartphones over the past few years
is having a significant impact on the primary computing in-
terface that many individuals use. As highly capable mobile
devices become more prevalent, more activities are being
pushed to these mobile devices, rather than using more ro-
bust systems. Much work has been done to study usage on
workstations and laptops [6, 1, 12, 7, 2, 4, 9], but typical
usage on smartphones can differ significantly. Smartphones
are natural candidates for more context-aware applications,
since they typically contain multiple sensors, such as GPS
and light sensors, which can provide information about the
users environment. Understanding how users interact with
these devices can help developers optimize applications and
system level components to improve performance and make
devices more efficient.

While previous work has focused on system and performance
monitoring on traditional devices, and on sensor and user ac-
tivity on mobile devices, we feel that utilizing an integrated
cross-layer monitoring tool which incorporates all informa-
tion provides an opportunity for novel and interesting dis-
coveries. For example, better understanding of the relation-
ship between user activity and sensor readings will allow for
analysis of complex socio-technical interdependencies (e.g.,

how technology affects human activity and interaction and
how technology can be improved to better support next-
generation social networks). Another example would be to
study the interaction between sensor readings or user ac-
tivity and operating system activity. This could provide
new insights into the performance impacts of common us-
age patterns and applications, which can be used for the
optimization of operating systems or applications. We aim
to provide an integrated monitoring tool which incorporates
the three layers of activity: sensor, system, and user.

We design our monitoring framework for the Android mobile
operating system. There are several advantages to working
with this operating system. Firstly, Android is an open oper-
ating system, so much of the source code is easily accessible.
The openness of the platform has also resulted in a large
community of developers. Android is based on a standard
Linux kernel, which allows us to incorporate methods uti-
lized in Linux. Lastly, Android is a popular and growing
platform. It currently sells around 200,000 devices per day,
meaning there is a very large and rapidly growing user-base
for this platform. Using a combination of kernel patches and
kernel modules, we develop an abstracted interface layer for
monitoring. In this paper we introduce NDroid, an inte-
grated monitoring solution which provides a simple API for
research and development.

2. RELATED WORK
Significant work has been done in the areas of monitoring
and modeling on traditional systems. Tools such as PerfMon
[7] and PAPI [6] provide low level system performance mon-
itoring. Ganglia [9] and SuperMon [12] provide monitoring
tools for clusters and distributed systems. There has been
previous work on modeling user or system behavior [4, 1, 2]
as well, which is used to improve system performance or de-
sign. Some of these same concepts and methods can be uti-
lized in monitoring smartphones, but smartphones present
a greater importance on energy conservation, and provide
additional contextual information that can be incorporated
into the monitoring. Some early work in modeling user ac-
tivity on smartphones has been completed by Falaki et al.
[8].

Previous work has attempted to extract contextual infor-
mation about users based on embedded or wearable sen-
sors, such as the Mobile Sensing Platform [5]. Recent work
has extended this concept to utilize the sensors available in
smartphones, since these are becoming ubiquitous wearable
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sensing devices. Reddy et al. used smartphones to deter-
mine the transportation mode of an individual [14], while the
CenceMe project attempted to decipher multiple contextual
properties such as user activity and location, using a variety
of sensors and learning algorithms [11]. More recent work
has also attempted to use sensor data from smartphones and
user interaction with applications to model human behavior
[3, 13, 10, 11]. These studies can provide interesting discov-
eries which can aid in future system and application design.

3. MONITORING ON MOBILE PHONES
While system monitoring on standard systems has been ex-
tensively researched, little work has been done in the area of
monitoring on small mobile devices. Mobile phones provide
some unique opportunities and challenges for monitoring.
Since mobile phones have limited resources in comparison
to standard systems, efficiency is imperative. Mobile phones
run on batteries, therefore monitoring services should have
minimal impact on power usage, so that lifetime of devices
is not diminished. Also, since mobile phones have relatively
limited processing power and memory, the computational
impact on systems should be minimized. Smartphones offer
several unique opportunities as well. Smartphones incorpo-
rate various sensors, such as GPS, accelerometers, orienta-
tion sensors, and ambient light sensors. These sensors can
provide context information about the user and their envi-
ronment. These aspects of usage could not be as easily in-
tegrated with system monitoring on standard systems, and
could provide new understandings of how systems are used.
Also, smartphones are utilized differently than standard sys-
tems. This provides an opportunity to understand unique
usage patterns on a new platform.

Early efforts to model smartphone usage have shown that
there is a great diversity among how users interact with
these devices [8]. These findings indicate that optimization
of applications may best be achieved using dynamic meth-
ods which depend on the user or usage scenario. Developers
could incorporate monitoring services into their applications
to obtain information which may be useful for optimization.
This approach would not be ideal, however, as many de-
velopers would likely be incorporating similar monitoring
features into their applications, resulting in inefficiencies in
the overall system. This is particularly significant in smart-
phones, where resources are limited, so duplicated moni-
toring services can be expensive. It can also be difficult
to monitor some system level information, especially if it is
hardware dependent. Providing a single, simple to interface,
abstracted monitoring layer can greatly improve efficiency of
monitoring and make it much easier for developers to incor-
porate monitoring tools into their applications, which could
lead to novel improvements. This monitoring layer could
handle requests from all applications, and provide a single
interface to monitoring tools, which would eliminate inef-
ficiencies due to duplication of monitoring services. As an
example, if three applications needed to monitor the CPU
load at frequencies of 10 Hz, 20 Hz, and 100 Hz, respectively,
the monitoring layer could service all three of these requests
using a single 100 Hz monitoring service.

We developed the NDroid monitoring system to be inclu-
sive of all metrics which may be useful to developers or re-
searchers. The features which are monitored in the system

may be considered to fall in three categories: sensors, sys-
tem, and user activity. Sensors include any metrics provided
by readings from available sensors on the phone. This fea-
ture list will vary somewhat based on the device, but most
smartphones have a fairly standard group of sensors, such
as GPS and accelerometers. System features include any
metrics pertaining to the available resources of the system,
and any activities managed by the operating system or ker-
nel. The system resources would include processing power,
battery power, memory capacity, and network capacity. Sys-
tem activity would include read/write operations, network
actions such as sending a packet, and processor actions such
as context switches. All system features are monitored at
the kernel level. This is currently accomplished using a
patched kernel and kernel modules, but preferably these fea-
tures would later be pushed upstream to the main Android
kernel so that it will be available to all users. To provide
an efficient implementation which is consistent with current
kernel practices, monitoring features are implemented uti-
lizing the Linux notifier toolchain, which provides a pub-
lish/subscribe method of notifications. This method will
also allow the monitoring system to customize what is cur-
rently being monitored based on application needs, thereby
avoiding unnecessary use of system resources. To provide a
complete monitoring solution, NDroid will also incorporate
user activity monitoring. This includes monitoring of activi-
ties such as application usage and text messaging. Integrat-
ing this information with system monitoring and sensor data
provides the opportunity for stronger analysis of user activ-
ity and system performance. The following three sections
provide more detail about the three categories of monitor-
ing features, and the specific metrics which are monitored.

3.1 Sensors
Sensors can be used to determine contextual information
about the device and user. This data can be used to in-
fer user activity and environmental conditions. Combining
this information with system and user activity monitoring
may provide unique insights into how user interact with mo-
bile devices. Smartphones include an increasing number of
sensors, and research into how these can be used to infer
activity or contextual information has grown over the past
few years [14, 10]. As research in this area expands, there
will only be an increase in the contextual information that
can be derived from sensors. A list of the implemented and
planned monitoring features for sensors is shown in Table 1.

Table 1: Sensor monitoring features
Activity Feature Description
GPS gps GPS sensor reading

Magnetometer magneto Magnetometer sensor
reading

Accelerometer accelx Accelerometer sensor
accely reading for x, y, and
accelz z axis

Orientation azimuth Orientation sensor
pitch reading for azimuth,
roll pitch, and roll

Proximity proximity Proximity sensor reading
Light light Ambient light sensor

reading
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3.2 System
System monitoring encompasses most of what would be con-
sidered typical performance and system monitoring on tra-
ditional systems. In includes information about system re-
sources and operating system activity. System resources en-
compass the resources available to a system which directly
impact user experience. These resources include the proces-
sor, memory, and network resources, as well as vital system
resources such as the battery. A list of the implemented and
planned monitoring features for system resources is shown
in Table 2.

Table 2: System resource monitoring features
Activity Feature Description
CPU cpufreq Current CPU fre-

quency
CPU cpuload CPU load

Memory memavail Available memory
Cache cache Cache in use

Wifi Network wifibw Bandwidth of 802.11
interface

Wifi wifisig Signal strength of
802.11 connection

Cellular Network cellbw Bandwidth of cellular
data interface

Cellular Network cellsig Signal strength of cel-
lular connection

Battery battlevel Remaining battery
level (as percentage)

Battery battcurr Active current usage of
system (in mA)

Battery battcap Capacity of battery

Monitoring system resources can provide valuable informa-
tion for a number of applications. It may be used to optimize
the performance of a system by altering the function of the
system based on observed usage or available resources, as
is done in a userspace frequency scaling application. Appli-
cations can use this information to alter their behavior in
order to avoid negatively impacting the system or user ex-
perience. System resource monitoring may be used to model
the impact of applications on a system, and can be a tool for
optimizing applications. It may also be used to model user
behavior and activity, to determine methods to optimize the
system based on usage.

System activities include any action of interest which may
be taken by the system, typically utilizing system resources.
When integrated with system resource monitoring, these fea-
tures can be used to study how activities impact system
resource usage. When integrated with user activity moni-
toring, these features can be used to study how user activity
impacts the system. These features may also be used for
modeling of applications. It is possible that each applica-
tion has a fingerprint, which can be determined based on
observed system activity. Modeling system activity for dif-
ferent applications could provide useful insight to how the
system is being used, and what actions may be expected in
the future. This could allow developers and researchers an
opportunity to optimize system performance based on ex-
pected future needs. This information can also be useful
for applications, which may need to know the state of some

system components. A list of the implemented and planned
monitoring features for system activity is shown in Table 3.

Table 3: System activity monitoring features
Activity Feature Description
CPU context Context switch on the

processor
I/O memread Read/Write

memwrite internal memory
I/O sdread Read/Write sdcard

sdwrite or external storage
Interface Up netup 802.11 interface

/ Down netdown up/down
Interface Up cellup Cellular interface

/ Down celldown up/down
Interface Up blueup Bluetooth interface

/ Down bluedown up/down
Interface Up gpsup GPS interface

/ Down gpsdown up/down
Devices blueconn Bluetooth device

bluedisc connect/disconnect
Network nettrx 802.11 packet transmit
Network netrecv 802.11 packet receive
Network celltrx Cellular network packet

transmit
Network cellrecv Cellular network packet

receive

3.3 User activity
User activities encompass activities observed at the appli-
cation layer. This information can be very useful for un-
derstanding typical usage patterns of smartphones. Mobile
phones provide a unique environment for system resource
usage, which has not been fully explored. Modeling user be-
havior and developing a better understanding of how these
devices are used can be instrumental to efforts to optimize
system performance. When combined with system monitor-
ing and sensor data, this data can also provide information
about how applications impact system activity and resource
usage. This can be a great tool for analyzing and improv-
ing application performance. A list of the implemented and
planned monitoring features for user activity is shown in
Table 4.

Table 4: User activity monitoring features
Activity Feature Description

Application appopen Open / Close of
appclose application by user

Cellular callsnd Make / Receive a call
activity callrec on cellular network
Cellular textsnd Send / Receive a text
activity textrec on cellular network
Email emailsnd Send / Receive an

emailrec email
Screen screen On/Off state of screen

4. MONITORING API
The primary purpose of this monitoring tool is to facilitate
development and research for smartphones and mobile de-
vices. To do this, we aim to provide a simple and easy to
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interface API, which will allow developers and researchers
to easily access the desired metrics from the system and
still provide a robust tool which allows them to customize
the monitoring metrics to their specific needs. To accom-
plish this, we use a kernel module, which serves as a central
manager for the monitoring processes, and a central point
of communication for the monitoring system and the devel-
oper. The NDroid module will expose an API to the devel-
oper which will allow them to request the features they want
monitored, and the properties for each monitoring activity.
The module will then communicate with other modules, and
with the kernel, to initiate only those monitoring services
which are needed. This will allow the system to provide
a very robust monitoring tool without having any greater
impact on the system than is necessary. The NDroid API
may be accessed by multiple applications, the module will
manage which features are needed by each requester, and
provide each only the information that is requested.

There are three primary types of requests that can be made
to NDroid: instantaneous reading, register a continuous mon-
itor, and register a notification monitor. The instantaneous
reading request is simply a request for the current value of a
particular feature that can be monitored. For instance, this
can be a request for the current load on the CPU. This a
single instance request, for cases when a continuous moni-
tor is not necessary. The format for such a request in the
NDroid API is:

instant_value(u16 FEATURE, (void *) VALUE)

FEATURE indicates the desired metric to be measured or read,
and VALUE is a pointer to the location where the value of the
metric should be stored.

For metrics that need to be continuously monitored over
time, the developer may register a continuous monitor of a
supported feature. They can do so by indicating the feature
they want to monitor, as well as the frequency of readings or
measurements. They will also indicate a callback function
for this monitor. This callback function will be used in a
similar fashion as the Linux notifier toolchain. The NDroid
module will call the function at the requested frequency, in-
cluding in the call a single argument which is the value of
the requested feature. The developer will need to provide
a function which handles this value to process it as desired.
This method is used to avoid unnecessary reads/writes to
the system or to external storage. This helps keep the mon-
itoring tool lightweight by passing the value directly to the
requester(s) rather than writing to the proc directory or to
a file. The format for such a request in the NDroid API is:

register_monitor(u16 FEATURE, time_t FREQUENCY,

(void *) FUNCTION)

The NDroid monitoring system can also be used to continu-
ously monitor features but only issue callbacks when certain
conditions are met. These monitors will be referred to as
notifiers. The monitoring module will continuously moni-
tor these features at the requested frequency, but will only
initiate a call to the callback function when the specified
criteria are met. The format for such a request is similar
to the monitor request, but with the additional information

to specify the notification conditions. These conditions may
be absolute qualifiers, such as notify when the feature value
rises above a certain threshold, or relative qualifiers, such as
notify when the feature value changes by a certain thresh-
old. The supported condition types are shown in Table 5.
The format for such a request in the NDroid API is:

register_notifier(u16 FEATURE, time_t FREQUENCY,

u16 CONDITION, u16 VALUE, (void *) FUNCTION)

Table 5: Supported condition types for registered
notifier monitor

Condition Description
MINTHRESH Notify when metric falls below a

minimum threshold
MAXTHRESH Notify when metric goes above a

maximum threshold
CHANGE Notify anytime there is a change in

metric value
UPTHRESH Notify when metric rises a specified

threshold
DOWNTHRESH Notify when metric falls a specified

threshold
ABSOLTHRESH Notify when metric rises/falls an ab-

solute threshold

5. FUTURE WORK AND DISCUSSION
We are currently implementing the NDroid monitoring tool,
and plan to fully implement all monitoring features described
above, as well as any additional features which are found to
provide useful information. The API module will be im-
plemented to manage each of these metrics, and to expose
the described interface to developers for ease of integration.
We will also look into alternate methods of monitoring fre-
quency. Rather than leaving frequency of monitoring deci-
sions to users or developers, an alternate option would seek
to provide an optimal frequency, such as the Markov-optimal
sensing policy proposed in [15]. Following completion of
implementation, we will extensively test all features of the
monitoring tool to measure its impact on energy usage and
processing latency. It is always important to minimize im-
pact on a system when monitoring, but given the limited
resources of smartphones, it is especially critical. The mon-
itoring tool has been designed with this in mind, and should
be fully tested to ensure that it meets these expectations.
Impact to both battery lifetime and system responsiveness
should be negligible to users.

Future work will also need to include an examination of the
privacy consequences of this tool. The tool will of course
be designed to only capture state information which could
be useful to understanding usage, such as capturing a text
message send event, without capturing the text in the mes-
sage. Despite this, the tool will have the ability to generate
a detailed log of what applications the user used, at what
times, and under what environmental conditions (based on
sensor readings). This could be considered a privacy con-
trol issue, even though specifics of the application use are
not captured. This may not be an issue for research which
is conducted with a controlled group of active participants.
However, if this tool should become an integrated part of An-
droid to support simple access to system resource data by
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application developers, then these privacy issues will need
to be addressed.

There is still much to be learned about how individuals uti-
lize their smart and multimedia phones. Our current knowl-
edge base is rooted primarily in common usage on tradi-
tional systems. Usage patterns on mobile phones may, and
likely do, differ significantly than usage on traditional sys-
tems. Understanding how these devices are utilized can pro-
vide valuable information to optimize both hardware and
software design, and improve performance and utility. This
monitoring tool will be used to capture data on application
usage and typical user activity. We hope to use this data to
develop models which will provide a better understanding
of how applications impact the system and how users utilize
smartphone devices. These models could provide the insight
needed to improve system performance, or the performance
of applications.
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ABSTRACT
Beacon-based Short Message eXchange (BSMX) is a sys-
tem to exchange small-sized messages between unassociated
WLAN devices like smartphones or access points. In this
paper, we describe our proof of concept implementation of
BSMX for Linux and the Android operating system. Fur-
thermore, we introduce a novel probabilistic data structure
that BSMX utilizes to provide application developers meth-
ods for distributed data aggregation.

1. INTRODUCTION
Vehicular Ad-Hoc Networks (VANETs) are a special class
of Mobile Ad-Hoc Networks (MANETs) where road vehicles
with WLAN equipment form a network without additional
infrastructure. In such a network each vehicle can communi-
cate directly with all other vehicles in radio range. Typical
applications for such a network try to increase the driver’s
safety and convenience by exchanging sensor values. For in-
stance, SOTIS [8] and TrafficView [5] exchange information
like speed and position among vehicles in order to enable
users to access the current traffic conditions. Furthermore,
[1] propose to equip ticket machines with WLAN so that
they can inform vehicles about the capacity utilization of
their parking lots. These approaches have in common that
vehicles automatically aggregate received information and
exchange these aggregates among each other. If a received
aggregate is outdated or the distance between the vehicle
and the position of the data origination is too large, the
information is dropped and the dissemination is stopped.
Instead of querying special information, the system works
as a best effort service and automatically exchanges aggre-
gates about the situation in the proximity of a vehicle. Some
approaches also propose a hierarchical aggregation system.
For instance, the authors in [1] subdivide the plane into a
grid and utilize a quad tree mechanism to aggregate the uti-
lization of parking lots. This system enables the driver to
receive information about available parking lots in the prox-
imity, but also about the situation in other districts.

The main purpose of VANETs is to increase the security by
warning other drivers of dangerous situations like an emer-
gency braking. It is obvious that due to the high risk of
misuse, such a network does not use an open architecture
that can be utilized to develop novel applications by every-
one. The main contribution of this paper is the presentation
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of our technical solution to build such systems based on al-
ready deployed IEEE 802.11 devices like access points and
smartphones that primarily have another intended use.

The remainder of this paper is structured as follows: The
next section analyzes the mechanisms to exchange data pack-
ets between mobile devices like smartphones. Section 3 de-
scribes our novel approach called BSMX which allows the
easy data exchange in a 1-hop neighborhood. A proof of
concept implementation is described in Section 4. Section 5
explains an existing probabilistic data structure that can be
used for the in-network aggregation of sensor values. Our
novel data structure that is used in the BSMX system is de-
scribed in Section 6. Section 7 illustrates the results of our
simulation study. Finally, Section 8 summarizes the paper.

2. WIRELESS COMMUNICATION
Several mainstream wireless communication technologies for
handheld mobile devices like smartphones are available on
the market today. However, there is no established and easy
to use method available to exchange packets between such
devices without using any infrastructure. On the one hand,
smartphones are equipped with technologies like UMTS and
GSM, both using an area-wide infrastructure which is con-
trolled by telecommunication companies that offer the ac-
cess to the phone network and to the internet via their in-
frastructure. On the other hand, smartphones are typically
also equipped with Wireless LAN (WLAN) and Bluetooth.
The telecommunication companies have no incentive that
devices of their customers communicate directly with each
other without the usage of the companies’ infrastructure and
outside of their control. The situation of the second group of
technologies differs clearly, because in the most cases WLAN
and Bluetooth are self-governed by the device owners.

Most smartphones are equipped with a Bluetooth device of
class 2 or class 3 and have a very limited radio range. Two
devices need to be paired to communicate with each other.
The pairing process is typically triggered automatically the
first time a device receives a connection request. After both
users have entered the identical pin the two devices can ex-
change files or contact information. Multicast or broadcast
communication is only available if the devices operate in a
Bluetooth ad-hoc network which is called piconet. However,
the Bluetooth stacks of smartphones usually do not support
the required profiles to operate in ad-hoc mode. Therefore,
we focus the further discussion on IEEE 802.11 which is
intended as a general replacement for wired networks and
allows a more flexible configuration.
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Although supported by IEEE 802.11, the ad-hoc mode that
allows a direct communication from one device to other de-
vices in radio range is rarely used in practice. We assume
that the complex configuration of ad-hoc networks is the
main reason for the current situation. IEEE 802.11 client
devices can start a search over all radio channels to find ac-
cess points and ad-hoc networks in radio range. If the user
wants to join a discovered network the device can adopt the
required network properties like SSID, radio channel and
encryption method from the selected network. However, to
create a new ad-hoc network the user has to configure the
device manually. Furthermore, the network requires a mech-
anism to assign unique IP addresses to all devices, and if
multi-hop communication is wanted a special ad-hoc rout-
ing protocol is required. Another issue is that many devices
cannot connect to an access point for Internet access and
communicate at the same time with other ad-hoc devices.
We are confident that most of these configuration problems
could be solved with the adoption and extension of exist-
ing technologies, but the tools the devices provide today
are not sufficient or far too complex. Another reason why
ad-hoc communication did not find the way to the market
yet is that no unique feature or killer application is avail-
able which requires it. Our conclusion is that the already
widely-used mobile Internet connections via UMTS are suf-
ficient to enable end-to-end communication between mobile
devices. However, we assume that an easy to use 1-hop data
exchange mechanism can generate a significant user benefit
and enable new types of applications.

3. BEACON-BASED SHORT MESSAGE EX-
CHANGE

The IEEE 802.11 standard defines a set of procedures to
create, join and maintain WLAN networks. These mech-
anisms require additional packets that are not forwarded
to the operating system. Furthermore, the standard allows
manufacturer-specific components in most of these manage-
ment packets. We have developed an IEEE 802.11-compliant
extension that allows user space applications to add short
messages to these management layer packets. Moreover, we
also developed a mechanism that forwards this user data to
the related application. A major advantage of our approach
is that it does neither require a common SSID nor negotiate
encryption settings or routing layer configurations. The idea
is that WLAN devices can operate without changing their
network and security configurations. We call this novel com-
munication method Beacon-based Short Message eXchange
(BSMX).

Access points and ad-hoc network nodes send unencrypted
beacon packets periodically, typically every 100 ms. Our ap-
proach can be utilized to add small-sized messages to these
beacon packets which are sent independently from the cur-
rent network load, anyway. This exchange method leads to
a heterogeneous radio channel configuration. However, the
distance between the IEEE 802.11b/g channels is 5 MHz
only, and the used channel width is 22 MHz. This overlap
and the used encoding technique allow the successful de-
coding of some packets which are transmitted on adjacent
channels by using a technique called overhearing. Network
devices drop such packets by default, but our BSMX system
uses this channel overlap to monitor a part of the frequency
band without changing the radio channel of the device. In

a comprehensive measurement study we analyzed the ex-
pected connectivity between indoor access points and a mo-
bile device on the street in an inner city environment [7].
The average reception rate is 53% for packets that are sent
on the same channel, 35% for packets that are sent on ad-
jacent channels and 4% for packets with a distance of two
channels. The low rate of 53% is caused by the fact that
most access points should only cover indoor areas, whereas
the measurement was performed on the street.

One drawback of this mechanism is the fact that mobile
devices like smartphones typically run in client mode and
hence they do not send beacon packets continuously. Thus,
a mobile device running in client mode can receive messages
from access points which operate on the same radio channel
but cannot send messages back or even communicate with
other client devices. Therefore, the extended version of our
approach utilizes the active scan procedure which is defined
in the IEEE 802.11 standard to discover access points in
the proximity. During such an active scan the device passes
through all radio channels to send probe request packets
that are answered from receiving access points by returning
a probe response packet. The BSMX system can add mes-
sages to both probe request and probe response packets and
can this way exchange small-sized messages between unas-
sociated WLAN devices that do not operate on the same
radio channel. This approach has the advantage that most
devices can conduct an active scan while they are connected
to an access point and smoothly resume the connection after
the scan. The active scan mechanism can also be utilized to
exchange messages between devices that currently are not
connected to an access point.

4. IMPLEMENTATION
The chance that BSMX can find a way to the consumer
market highly depends on the complexity of its appropria-
tion. Therefore, a main design goal of the BSMX system
is to minimize required changes of existing software compo-
nents and work principles. This consideration is the reason
why BSMX utilizes the so called tagged parameter mecha-
nism of the IEEE 802.11 standard to extend already existing
management packets. This strategy has two important ad-
vantages: First, devices without BSMX support just ignore
unknown tags and discard the additional data without any
drawback or failure. The second advantage is that the ex-
tension of existing device drivers is comparatively easily and
can be done by including the source code of our extension
in less than hundred lines of code.

Figure 1 shows the system architecture. The BSMX exten-
sion is linked to the device driver and is running in ker-
nel space. We use Netlink (RFC3549) as communication
method between the extension and user space applications.
The advantage of Netlink compared to other communication
methods like ioctls is that it allows bidirectional communi-
cation and implements a multicast mechanism. The former
one is necessary to forward received messages to user space
without polling. We have implemented the extension for
the TNETW driver that is used by the majority of Android
devices and also for the open source driver MadWifi which
supports Atheros based chipsets.

The BSMX header specifies the message type as integer
value but does not implement an addressing schema. We
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Figure 1: BSMX System Architecture

assume that most applications decide on the receiver’s side
whether they are a recipient. With respect to the broadcast
characteristics of the ether every transmitted message can be
received by every device in radio range. A new aspect is that
we move the decision whether a packet should be dropped
from the operating system to the application. However, it
is possible that more than one application is interested in
receiving this message. For this purpose we developed a
central daemon that implements the publish/subscribe pat-
tern and enables applications to subscribe the reception of
messages of a specified type via TCP. Applications can also
utilize the daemon to send messages over WLAN or to other
local applications. Furthermore, the daemon maintains a
neighbor table that can be accessed by all applications. The
central instance is also required to check the security set-
tings and deny unauthorized access to the WLAN device.
Additionally, the daemon provides a standardized interface
to several probabilistic data structures that can be utilized
by application developers.

The intention of this approach is to provide a complete set
of tools to create new types of applications. For instance,
an application can aggregate the sensor values of several
devises in the proximity before transferring the result to a
central server for further processing. This procedure would
help protecting the privacy of the application users. We
also assume that for many applications it would be sufficient
to know that two devices are close to each other without
knowing where they are.

5. FLAJOLET-MARTIN SKETCHES
A Flajolet-Martin sketch is a data structure for probabilistic
counting of distinct elements [3]. In this context an element
represents everything for that a hash value can be calculated,
e.g., a text string or a file. Please consider that the data
structure does not store the element itself. The advantage is
that the required storage size of the sketch only depends on
the selected configuration parameters and does not depend
on the number of inserted elements. A higher storage size
leads to a better approximation of the number of distinct
inserted elements. Two parameters influence the required
storage size. M defines the accuracy and L the number of
distinct elements that can be inserted. For instance, M =
128 and L = 16 leads to a storage size of 256 Bytes (128· 16

8
).

The sketch of this example can count about 530000 distinct
elements and provides a standard error of approximately 7%
(0.78/

√
M).

An application X can add the integer value Y to a sketch by

inserting Y different elements. For instance, the application
can use the hash values of the strings ”X : 1” . . . ”X : Y ”. In
this scenario, the number of distinct values of the sketch is
equivalent to the sum of all inserted integer values. For ex-
ample, if two applications add values of Y1 = 25 and Y2 = 50,
the distinct number of inserted elements is 75. The calcula-
tion of the average requires a sketch that stores the sum of
all integer values and one that stores the number of inserted
integer values. In the example of the parking lot application
named in the introduction, the capacity utilization can be
calculated by using two sketches. One contains the number
of available parking lots and the other one stores the total
number of parking lots.

The insertion process is deterministic and completely inde-
pendent from the current state of the sketch. If one element
is inserted several times, the identical bit is set to one each
time. Hence, sketches are duplicate-insensitive and the order
of insert operations does not affect the estimation process.
These probabilities allow that sketches can be merged by a
simple bit-wise OR operation. The merged sketch can be
used to estimate the total number of distinct elements that
are added to any of the source sketches. This behavior and
the compact storage size are useful for the distributed cal-
culation of aggregation functions like COUNT, SUM and
AVG inside VANETs or sensor networks [2]. [6] introduce a
compression schema for sketches and [4] provides an aging
strategy that removes outdated elements from a sketch.

These approaches are suitable for the in-network aggrega-
tion of sensor values. For example, a smartphone application
wants to estimate the number of other devices in the 5-hop
proximity that also runs an instance of the software. In this
scenario every device maintains a sketch, adds the name of
the device itself, and sends the data structure via broad-
cast to other devices in radio range. Received sketches are
added to the own sketch via a bit-wise OR operation. Then
the application use an aging strategy (e.g., [4]) to remove
outdated entries and send the sketch again via broadcast
to other devices; these steps are repeated iteratively. After
several iterations each device can use the sketch to estimate
the number of running instances in the 5-hop proximity. The
number of hops is a setup parameter of the aging approach
that increases the required storage size of a sketch.

The described procedure is very simple and robust, and does
not require any knowledge about the topology. However,
the same working principle can be used without sketches by
exchanging a list that contains tuples with the name of a
device and a time to live (TTL) counter. In this case, each
device maintains such a list and adds its own name with the
maximum TTL counter. The device decrements the TTL
counter of all entries beside its own entry and removes entries
with a TTL counter below zero before it sends the list via
broadcast to its neighbors. If a device receives a list, it adds
all unknown devices to its own list and updates the TTL
counter of already known devices. This way each device
can also estimate how many other devices in the proximity
run the application. However, this approach is very limited
because the size of the list will grow very fast. For instance,
if every device adds its own MAC address and a TTL counter
that can store four hops, every entry would require 6 · 8 +
2 = 50 bits. With respect to the typically used maximum
transfer unit a list with 22 entries can be transferred without
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fragmentation at most. Compared to the sketch approach
that can count several thousand entries, a capacity of 22 is
extremely small.

A serious drawback of the probabilistic approach is that it is
only suitable if the application can accept a standard error
of at least 5%. In our simulations, values of M > 256 do no
longer improve the accuracy significantly. Furthermore, the
accuracy can only be achieved if more than 15 ·M elements
are inserted. In other words the sketch we named before
requires 128 ·15 = 1920 entries to achieve the standard error
of about 7%. This behavior makes the configuration com-
plex and depends on the number of participating devices.
Another drawback is that the range of integer values that
can be inserted is very limited. The number of elements
that can be inserted to a sketch depends on its setup pa-
rameters. However, it is obvious that the insertion of 64-bit
values exceed the available range clearly. For these reasons,
we present in the next section a novel approach to calculate
and exchange aggregates.

6. BLOOM FILTER MAPS
Flajolet-Martin sketches are suitable to estimate aggrega-
tion functions in large scale networks. However, in envi-
ronments with a low number of participants the accuracy
can decrease significantly. Another limitation is that a more
complex aggregation can only be reproduced by using sev-
eral sketches. This section presents a novel approach that
overcomes these limitations and offers further advantages.

In the last section, we briefly described the distributed esti-
mation of the number of participating devices by exchanging
a list with device names and TTL counters. The sum or the
average can be estimates by adding the sensor values to the
related list entries. If we assume that it is typically suitable
to use a range of 0 . . . 255 as sensor value and 1 . . . 8 as hop
range, each entry needs 6 · 8 + 8 + 3 = 59 bits. It is obvi-
ous that the largest fraction of storage is used to identify the
owner of the entry. The main idea of our approach is to sub-
stitute this identifier by a probabilistic replacement. Keep
in mind that the hashing of the MAC address is a proba-
bilistic method that can lead to hash collisions. However,
the reduction of the storage amount achieved by hashing is
not sufficient.

Bloom filters are a well-known data structure that is used
to test whether an element is a member of a set. False
positives are possible, but false negatives not. A Bloom
filter is bit field B = b0 . . . bN−1 of a length N > 0 and is
initialized with zeros on every bit position. An element E
is added by setting bit bX with X = hash(E) mod N to
one. A similar procedure is also used to test whether an
element was inserted before. If the tested bit is one, the
element is member of the set or a collision had occurred
(false positives). However, if the bit is zero, the element
was definitely not inserted. The false positive rate can be
reduced by utilizing more than one hash function, but we
will focus on the approach with one hash function only.

It is possible to extend the array positions from a single
bit to an n-bit counter. In our approach, a counter of zero
means that there is no entry; otherwise the counter repre-
sents the TTL of the entry. To come back to the uncom-
pressed list from the beginning of this section, the identifier

0 4 00 5 0 1 0 2 0 0

0 1 2 3 4 5 6 7

...

N-3 N-2 N-1

13 89 201 145...Values:

BF:

Figure 2: Bloom Filter Map

corresponds to the position inside the Bloom filter and the
TTL counter corresponds to the counter at the related posi-
tion inside the Bloom filter. The order of non-zero counters
is used to maintain an additional list which contains the con-
tent of the entries, e.g., the sensor vales. We call the Bloom
filter with TTL counters and value list Bloom Filter Map
(BFMap). Two BFMaps can be merged by performing a
MAX operation on every position of the related Bloom fil-
ters and arranging the corresponding values to a new list. If
two positions have a non-zero counter, this process prefers
the newer one. Figure 2 shows an exemplary BFMap. The
upper part of the figure shows the Bloom filter with TTL
counters and the lower part the list of related values.

It is obvious that several entries could be mapped to the
identical position inside the Bloom filter. This represents
the probabilistic part of our approach. The probability of
such a collision increases with the number of already in-
serted entries and decreases if the size of the Bloom filter
is increased. The interesting aspect here is that the en-
largement of the Bloom filter only slightly increases its en-
tropy. If the probability of each symbol of a data stream is
known, the well-known arithmetic coding approach [9] can
be utilized to compress the data stream entropy-optimal. A
Bloom filter with T -bits TTL counters consists of the sym-
bols 0 . . . (2T − 1). Assume that count(X) is a function that
returns the number of occurrences of the symbol X inside a
Bloom filter, then the probability of each symbol can be cal-
culated by count(X)/N . If a device receives a compressed
Bloom filter, N and a list of count(X), X ∈ 0 . . . (2T − 1),
it can decompress the data structure. It is sufficient to use
16-bit unsigned integer values to store and transmit N and
the counters.

7. EVALUATION
In [7] we estimated the connectivity of access point among
each other in the inner city of Mannheim, Germany. In the
following, we will use this very dense network to conduct a
simulation study to estimate the accuracy and the required
storage size of the BFMap approach. The simulator creates
for each of the 3797 simulation nodes a BFMap and inserts a
tuple based on a random integer value (node identifier) and
the maximum TTL Tmax. In the next step, the simulator
adds to the BFMap of each node the values of their neigh-
bors with a shortest path of x hops (x ∈ 1 . . . Tmax) with a
TTL of T −x. This procedure emulates the TTL reduction,
the exchange, and the joining process of BFMaps. Finally,
the simulator compares the created BFMaps with the real
situation. The comparison includes the number of neigh-
bors (COUNT), the sum of random values (SUM) and the
calculation of the average value (AVG). Furthermore, the
simulator compresses each BFMap and determines its com-
pressed size. Figure 3 shows extracts of the average results
of 150 simulation runs each using 3797 nodes.

The average size of a compressed Bloom Filter entry depends
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Figure 3: Simulation Results

on the number of inserted elements, the capacity N of the
filter, and the range of the TTL counters. In our simulation
environment the maximum TTL determines the number of
neighbors inside the TTL limit and thus it also defines the
number of inserted elements. Figure 3 shows the average
entry size for a maximum TTL of 4 (141 entries) and 7 (520
entries) respectively. This size includes the identifier and the
TTL counter of a node but not its value. Thus, if one byte
per value is used, the full size of the BFMap entry is also
increased by one byte. Although the compression of a higher
maximum TTL requires more symbols, the average entry
size of the TTL=7 example is lower compared to TTL=4.
The reason for this behavior is that the required storage
space of the zero TTL counters is distributed across more
inserted entries.

The results show that the usage of a BFMap with 8192
TTL counters is a good trade-off between size, computa-
tional complexity, and accuracy. The average count and sum
error of this setup is about 1% with 141 entries and 3% with
520 entries. An interesting aspect of the BFMap approach
is that even in the case of collisions the newly inserted ele-
ment only overwrites an existing entry without influencing
the other elements. In other words, the number of collected
samples to calculate an aggregation is reduced by one, but
all remaining samples are unchanged. This effect causes the
small error of the average calculation. We run simulations
based on uniformly and normally distributed random values,
but the differences were marginal, and therefore the figure
shows the former one only.

The presented BFMap data structure is well suited for the
distributed calculation of aggregation functions. The advan-
tage is that a developer can use real values for the calculation
and is not limited to basic functions like COUNT, SUM and
AVG. In addition, the developer controls the size and type of
the values used and decides which accuracy the application
requires. For instance, the developer can use a quantization
method to reduce the required size per value. Furthermore,
the BFMap can be used to maintain and exchange applica-
tions states or other kind of data that is not intended for
aggregation purposes. Contrary to Flajolet-Martin sketches
BFMaps do not require a minimum of inserted elements to
work properly. However, the size of a BFMap increases with

number of its entries in a linear way, and thus they are not
suited to calculate and exchange aggregates of several thou-
sand entries.

8. CONCLUSION
We present our BSMX system that can be utilized to create
novel applications without complex device configuration or
significant impairment of the device’s main functions. Our
approach also allows the development of hybrid applications
that communicate via WLAN and Internet. A sample appli-
cation could be to exchange public IP addresses via WLAN
for further communication or to detect the closeness of other
devices without GPS and central server. Furthermore, we
presented a novel probabilistic data structure that can be
utilized to aggregate sensor data in a distributed manner.
The data structure is also used by our prototype to maintain
a multi-hop neighbor table which is accessible to subscribed
applications. In future work, we will improve our prototype
implementation and make it available under an open source
license.
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ABSTRACT
We present the concept of Responsive Sleeping, where the
mobile phone can continue to sense its environment in the
sleep mode. This capability enables novel applications in
user interaction, context awareness, and people monitoring.
However, the state of the art phone architectures today re-
quire the application processor (AP) to be active to read sen-
sor data. The energy consumption makes responsive sleep
impractical. In this paper, after analyzing the root cause of
mobile sensing energy consumption, we present a new mobile
phone architecture that uses heterogeneous multi-processors
(or a multi-core processor) to achieve energy efficient respon-
sive sleeping (EERS). We present a prototype called Little-
Rock and evaluate its energy benefit for responsive sleep
through continuous sensing examples.

1. INTRODUCTION
Mobile phones today follow their users in almost every

activity they engage in. The ubiquity, mobility, and connec-
tivity of smart phones have made them ideal platforms for
personalized mobile services, evident from the large number
of applications available for various mobile platforms. Apart
from having a reasonably powerful processor and graph-
ics capability, current high-end smart phones have a rich
set of built-in sensors, such as GPS, microphone, camera,
accelerometer, ambient light, compass, gyro, and pressure
sensors that enable measuring various phenomena on and
around the phones and thus their owners. Location-aware
services, natural user interfaces, and many games rely on
these sensors to provide a superior user experience.

While it is most common for mobile applications to use
the sensors on-demand, where sensor reading operations are
initiated by the foreground process, application developers
have also shown the value of performing continuous sensing
in the background, even when the phone is not receiving di-
rect user attention. For example, in UbiFit [3], Klasnja1 et.
al. studies user behavior changes when they are fed with
fitness information such as exercise tracked by wearable ac-
celerometer and barometer sensors. In [6], a single wearable
sensor is used to estimate the calori expenditure of a user. In
Playful Bottle [2], Chiu et. al. attached a mobile phone to a
water drinking device and used images and motion to detect
the frequency and quantity of the user’s water consumption.
In SoundSense [8], Lu et. al. designed a mobile phone ap-
plication that uses sound signatures to detect user location
and activity. In the Mobile Millennium project [1], mobile
phones were used as tripwire sensing devices to collectively
detect traffic conditions.

All of these applications require the phone to continuously
sample its sensors independently of whether the user is inter-
acting with the phone. We call the capability that the phone
can continuously sense while appears to be sleeping Respon-
sive Sleeping (RS). In a responsive sleeping mode, the phone
does not draw user attention or require a foreground appli-
cation. However, in the background, it can continuously
monitor sensor input and wake up the phone if interesting
events happen.

Responsive sleeping can also greatly improve user experi-
ence with the phone, as if the phone is always on. For ex-
ample, if a phone can detect that it is being picked up from
the table and is approaching the face, it can automatically
enter the voice command mode. If the phone can continu-
ously monitor audio input, it can run speaker recognition to
detect the user’s company; then it can use this information
to pop up reminders or set UI preference (e.g. adjusting ring
tone or vibration). Another example is “geo-fencing”, where
an application registers a geographical region of interest, so
that an event is triggered to wake up the phone and activate
the application when the phone enters that region.

Responsive sleeping can be based either on sensors on the
phones, or on external sensors that communicate wirelessly
with the phone. In both cases, the energy consumption for
supporting RS is challenging. For example, we will show
in section 2 that a simple pedometer application can drain
a smart phone battery in a few hours. This energy ineffi-
ciency is not due to the system software overhead, e.g., task
scheduling, but rather due to the fundamental limitations of
current phone architecture. That is, to acquire any sensor
data or communicate with detached sensors, the application
processor (AP) must be active and running. Active APs
typically consume hundreds of milli-Watts (mW) of power.
In section 2, we also show that sensor duty cycling [10] does
not solve the energy inefficiency problem, since it takes up
to a second for the AP to wake up from the sleep mode and
restore the state for taking sensor readings.

Enabling energy efficient responsive sleeping (EERS) mo-
tivates us to rethink the mobile phone sensing architecture.
In this paper, we propose a new mobile phone sensing ar-
chitecture that can support EERS by breaking the tight
coupling between sensors and the AP. With heterogeneous
multi-processors or multi-core processors, a low power mi-
crocontroller or processor core can manage the sensors with-
out shortening the battery life noticeably. As a prototype
platform, we designed LittleRock, which adds a small, en-
ergy efficient co-processor to the phone to offload sensing
tasks to this small processor. All the available sensors and
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Sensor Sensor State HTC Touch Pro State (mW)
Active(mW) Sleep(µW) 1Hz Sampling(mW) Active (1680) Idle (399) Sleep (7.56)

Accelerometer 0.6 3 0.018 0.001% 0.004% 0.23%
Temperature 0.225 3 0.02 0.001% 0.005% 0.26%

Pressure 1.8 0.3 0.02 0.001% 0.005% 0.26%
Compass 2.7 7.5 0.5 0.03% 0.125% 6.61%

Gyro 19.5 15 1 0.06% 0.251% 13.22%
GPS chip 214 5 30 1.78% 7.518% 397%

(1MIPS CPU required) (acq. state)

Total (with GPS) 238.825 34.1 31.558 1.88% 7.91% 417%
Total (without GPS) 24.825 29.1 1.558 0.093% 0.39% 20.6%

Table 1: Power consumption of different types of sensors and their overhead (assuming 1Hz sampling rate)
on the overall power consumption of an HTC Touch Pro phone in 3 representative power states.

short range radios on the phone are connected to the small
processor, enabling the rest of the phone to go into the sleep
mode. While the phone is sleeping, the co-processor can
continue to acquire samples, process sensor data, and com-
municate with external sensors, all at a low energy overhead.
Since the two processors are tightly integrated, data between
them can be easily buffered and quickly exchanged on de-
mand. We discuss EERS architectures in section 3 and the
design of LittleRock in section 4.

Multiple sensing modalities can usually achieve the same
goals with different energy and processing requirements. The
addition of the sensing processor complicates this problem
by introducing additional trade offs between energy and
computation. In addition, the heterogeneous multiprocessor
architecture brings complexities to software design and ap-
plication programming. We discuss key hardware and soft-
ware challenges toward responsive sleeping in section 6.

2. MOBILE ENERGY BREAKDOWN
Battery life is one of the most critical design parameters

for a phone. Every new feature introduced, either it is hard-
ware or software, has to minimize its impact on the battery
life. Consequently, although continuous sampling and pro-
cessing of sensor data enables new application modalities, it
is necessary that these additional features do not severely
reduce the phone battery life.

Table 1 shows the overhead introduced by popular types
of sensors in the power consumption of a mobile phone,
the HTC Touch Pro running Windows Mobile 6.1. The
power overhead for each sensor is expressed as a percentage
of the power consumed by the HTC phone in 3 represen-
tative power states: Active(1680mW), Idle(399mW), and
Sleep(7.56mW). In the Active state, the phone is exercising
its CPU by running random computations while simultane-
ously downloading data over the 3G radio. In the Idle state
the phone is turned on, but there is no load imposed on the
CPU beyond the background services introduced by the op-
erating system. Also, no data is being sent or received over
the 3G radio. In the Sleep state the main processor is in
sleep mode.

When all the sensors listed in Table 1 are powered up, the
overall power consumption of the phone at the Active, Idle
and Sleep states increases by approximately 1.88%, 7.91%,
and 417% respectively. Note that in all cases, the GPS sen-
sor is responsible for 95% of the overall power overhead.
However, as recent work has demonstrated, more energy ef-

ficient location sensing can be achieved by properly combin-
ing cell tower triangulation and wifi fingerprinting to enforce
more aggressive duty cycling of the GPS sensor [7],[9],[12].
Without the GPS sensor, the total sensor power overhead
at the Active, Idle and Sleep states becomes 0.093%, 0.39%,
and 20.6%.

Even though the continuous operation of the hardware
sensors comes at a low power overhead, the process of ac-
cessing and processing sensor data on current state-of-the-
art phones is extremely expensive. The reason is that for
every sensor sample acquired by the phone, the main pro-
cessor and associated components have to be active, creat-
ing a large energy overhead. To better illustrate the impact
of continuous sensing on the battery life of current phones,
consider an example application where the accelerometer on
the phone is continuously sampled at a fixed frequency to
perform a variety of tasks such as user activity recognition,
dead reckoning-based indoor navigation, and step counting
(pedometer) [5, 11, 4]. Figure 1(a) shows the power con-
sumption of an HTC Touch pro phone while sampling the
built-in accelerometer at the rate of 50 samples per second.
When sampling the accelerometer, the overall power con-
sumption of the phone jumps to approximately 756mW com-
pared to the 7.56mW and 399mW of power consumption of
the phone in the Sleep and Idle states respectively. This
increase in power consumption is due to the fact that the
CPU of the phone has to be active in order to acquire and
store each accelerometer sample. In practice, this means
that when sampling the sensors, the phone has to consume
approximately 756mW, which is two orders of magnitude
higher than the power consumed by the phone in the Sleep
state.

Besides increasing the power consumption due to sam-
pling, continuous sensing introduces another major bottle-
neck by essentially preventing the phone from moving to its
Sleep state. The reason can be clearly seen in Figure 1(b),
which shows the power trace for waking up and putting a
phone into sleep. The phone needs approximately 900ms to
move to and 270ms to exit from the Sleep state. As a result,
a full transition between the phone’s Sleep and Idle states
takes more than a second. Because of this overhead, even
when continuous sampling is required at a very low sam-
pling rate, such as 2 samples per second, the phone does not
have enough time to transition to and recover from the Sleep
state and still acquire the next sensor sample on time. As a
result, in order to meet the timing requirements for continu-
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Figure 1: Current drawn from the HTC Touch Pro while (a) sampling the accelerometer at a rate of 50
samples per second and (b) performing a full sleep cycle.
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Figure 2: EERS phone architecture block diagram

ous sensing, the phone has to be Active, consuming approx-
imately 756mW. Given the 1340mAh battery capacity, an
HTC Touch Pro that continuously samples its accelerome-
ter would last for '6.7 hours, ignoring other services such
as phone calls, SMS send/receive, and 3G data traffic. With
these other services, the battery life will reduce even further,
making continuous sampling and processing of sensor data
impractical on current phones.

The goal of EERS is to enable continuous sampling and
processing of sensor data without significantly impacting
phone’s battery life.

3. SYSTEM ARCHITECTURE
To achieve EERS, continuous sampling and, to an extent,

processing sensor data must be decoupled from the appli-
cation processor of the phone. To achieve this, one can in-
troduce a low power microcontroller, or a low power core in
the multi-core processor to manage the sensors. This low
power microcontroller or the processor core enables most
parts of the phone to enter a low power sleep state, while
the low-power sensor processor is continuously sampling and
processing sensor data at a low-power overhead.

Figure 2 shows the block diagram of the proposed sensing
architecture. In this architecture, various low-power ana-
log and digital sensors are attached to a sensor processor.
The sensor processor is typically a low-power microcontroller
that consists of a CPU, RAM, ROM, and various peripherals
such as serial communication buses. The sensor processor
is interfaced to the main phone processor using a serial bus
and multiple control signals.

3.1 EERS Architecture Features

We highlight the following benefits of introducing a low
power sensing processor in EERS architecture:

Low power operation. Since a low-power processor
with a power consumption similar to that of a typical sen-
sor is used as the sensor processor, waiting during sensor
readings and control does not impose high energy overhead.
For example, the MSP430 family of low-power processors
consumes ' 1mW of power when operating at 1MHz.

Due to the simpler hardware architecture, a low-power
processor can transition between sleep and active modes
within a very short time. For example, the MSP430 class
of processors can switch between the sleep (' 0.01mW) and
active (16MHz clock, ' 20mW) states in <5µs. This short
transition time enables the sensor processor to be heavily
duty cycled to reduce the average power.

Programmable context-aware decision making. EERS
provides a programmable approach to deciding when to wakeup
the main processor based on sensor data. This decision mak-
ing can be customized to meet the demands of the current
user and the set of applications running on the phone. Since
the sensor processor has access to nearly simultaneous read-
ings from multiple sensors, the proposed architecture enables
richer context aware decision making through sensor fusion.

Real time sensing and event handling. A typical mi-
crocontroller has multiple hardware modules such as coun-
ters, timers, A/D converters, and serial buses that can op-
erate simultaneously. This hardware parallelism and the
typical multi MHz processor clock speeds make it possi-
ble to achieve almost real time response when sampling and
processing sensor data (assuming a light-weight processing
workload).

3.2 Implementation Options
There are three options for introducing the proposed sens-

ing architecture in mobile phones.
Use an existing microcontroller. Phones already have

dedicated microcontrollers implementing specific functions.
One good example is the capacitive touch controller which
interprets various user touch events and communicates to
the main processor using a serial bus. One possible imple-
mentation to enable EERS is to enhance one of these pro-
cessors and attach the sensors to this processor. This can
be a relatively low cost implementation option, since this re-
quires only a simple modification to existing phone platform
architecture.
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Figure 3: (a) The LittleRock prototype (b) The Lit-
tleRock prototype attached to the back of a phone.

Add a microcontroller. In this option, a dedicated
low-power microcontroller is added to the phone. This op-
tion increases the total number of components on the phone.
This is likely to be the most costly option out of the 3 men-
tioned here. However, given most low-power processors are
relatively inexpensive (<$1) in typical cellphone volumes,
the new application modalities enabled by EERS are likely
to offset this additional cost.

Add a low-power core. This option adds a low-power
core to the phone’s main processor. This is likely to be the
least cost option, since incremental cost of adding a simple,
low-power core on to the phone’s main processor is likely
to be very small. However, this option is not likely to be
the first option adopted by phone manufacturers, since this
requires changes to the phone’s main processor itself.

4. PROTOTYPE
We prototyped and evaluated the EERS sensing archi-

tecture using LittleRock, a prototype hardware platform
consisting of multiple sensors and a low-power processor
that interfaces directly to the main processor of a proto-
type phone. The main goals of this prototype were to ex-
periment with various context-aware applications that can
benefit from EERS, and to evaluate the energy overhead due
to the proposed sensing architecture.

Our prototype connects to the phone using a wired in-
terface. The resulting platform has a form factor similar
to that of a typical mobile phone, enabling us to conduct
various user studies on various EERS-enabled applications.
This section describes the details of LittleRock prototype.

LittleRock consists of four functional modules: the pro-
cessor, digital sensor, analog sensor, and the phone interface.

The processor module consists of an MSP430F5438
processor with 16kB RAM and 256kB flash memory. The
processor can be clocked up to 18MHz. This processor also
has a large number of parallel and serial inputs and out-
puts, making it possible to attach additional sensors than
those already built in to our prototype. This prototype also
has a smaller MSP430 processor (MSP430F2013) for on de-
mand reprogramming of the MSP430F5438 processor. The

Batch size Power
Phone LittleRock Hybrid

10 693 0.21 702
50 693 0.21 171
100 693 0.21 90
500 693 0.20 25

Table 2: Average power required to acquire and pro-
cess 500 samples at a 10Hz sampling rate at different
processing batch sizes

processor module also contains an 8MB flash storage.
The digital sensor module contains a temperature sen-

sor, a 3-axis accelerometer, a barometer, and a 3-axis com-
pass module connected to the main processor through an
I2C bus.

The analog sensor module consists of sensors that have
analog outputs. In particular, this module contains an X-
Y axis gyroscope and a Z axis gyroscope that collectively
provide 3-axis gyroscopic data. To reduce the impact due to
processor generated digital noise, and to provide better reso-
lution than what is possible with the built in A/D converter
of the processor, we used 3 external 16 bit A/D converters
to digitize the gyroscope outputs.

The phone interface consists of a wired connection be-
tween LittleRock and the expansion connector on a proto-
type phone. LittleRock and the phone communicate over
a 4 wire SPI bus. LittleRock is directly powered from the
phone’s battery, through the expansion connector. The phone’s
IO voltage exposed by this connector indicates if the phone
is powered on or off. A GPIO pin enables LittleRock to
interrupt and wake up the main processor.

5. EVALUATION
In this section we evaluate the performance of a pedome-

ter application that counts user steps based on periodic ac-
celerometer samples. A pedometer is a classic application
that benefits from EERS, where the accelerometer has to be
continuously sampled even when the phone is in sleep mode.

The pedometer application samples a 3-axis accelerometer
at 10 Hz, after collecting a batch of n samples, it examines
the magnitude variation of acceleration to detect user step
events. We evaluate the energy consumption of a pedometer
application under three different configurations: running on
the phone, running on LittleRock, and running on a hybrid
of phone and LittleRock. In the hybrid approach LittleRock
buffers the batch of n samples and sends them to the phone
for updating the step count.

Table 2 shows the average power consumption of the three
different hardware configurations. The column under“Phone”
is the most energy inefficient configuration since it consumes
' 700mW. Note that this number does not change with the
processing batch size, since at the 10Hz sampling rate, the
phone continues to be in the active state due to the large
sleep transition time.

The LittleRock only configuration consumes ' 0.2mW.
This corresponds to more than 3 orders of magnitude im-
provement in the power consumption compared to the phone
only configuration. Unlike the phone, the low-power proces-
sor on LittleRock can transition to sleep mode almost in-
stantly. This, combined with the lower power consumption
of the processor, reduces the overall power overhead in Lit-
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tleRock configuration. Note that, in this configuration, the
power consumption reduces slightly with larger batch sizes
due to the amortization of fixed processing overhead over a
larger batch of data.

Table 2 also shows that the hybrid approach can be signif-
icantly energy efficient for large batch sizes. This is because
larger batch sizes enables the phone to spend more time in
the sleep mode, while LittleRock is sampling and buffering
sensor data.

6. RESEARCH CHALLENGES
The proposed architecture for enabling EERS fundamen-

tally changes how applications interact with sensors. This
brings additional systems challenges.

Sensor processor selection. In the proposed architec-
ture, sampling and processing of sensor data is offloaded to
a sensor processor or a sensor processor core. However, de-
termining how much processing capability and functionality
the sensor processor should possess is a challenge.

If the sensor processor does not have enough processing ca-
pability, the main processor has to be woken up more often,
resulting in high energy consumption. On the other hand,
too much functionality in the sensor processor increases the
processor sleep currents and wakeup times, and thus the av-
erage power. Consequently, the processor selection requires
a careful evaluation of the anticipated resource requirements.

Sensor processor resource management. The sensor
processor samples and processes sensor data on behalf of
multiple user applications. This can result in multiple user
applications competing for resources on the sensor processor.
Such competing applications raise two challenges.

The first challenge is ensuring fair sharing of sensor proces-
sor resources among multiple applications. The second chal-
lenge is preventing applications from overloading the sensor
processor, which can lead to unpredictable behaviors due to
effects such as stack overflows. To address these concerns,
the sensor processor needs to employ strict resource count-
ing and management of its memory, processing, and energy
resources.

Sensor API. The user applications access the sensor
sampling and processing services of the sensor processor
through a sensor API. This API should be flexible enough to
access multiple services provided by a generic programmable
processor, while being simple enough for application devel-
opers to use this API without spending too much effort.

Application partitioning. Under the proposed archi-
tecture, an application that uses sensor data spans across
the sensor processor and the main processor. With this, an
application developer needs to decide how to partition an
application across these processors. Offloading too little to
the sensor processor results in spending too much energy on
the main processor, while offloading too much can overbur-
den the sensor processor. Enabling application developers
to make the best decision on how to partition an application
will require support for fine-grained application profiling.

7. CONCLUSION
This paper focuses on Responsive Sleeping, where data

from multiple sensors attached to the phone are continuously
sampled and processed, even when the phone appears to be
in the sleep mode. RS is an advanced feature that enables
novel user interface, participatory sensing, and health and

fitness applications.
Through detailed measurements we show that the current

phone architecture, where all sensors are directly controlled
by the phone processor, cannot meet the battery lifetime
requirements for RS.

Based on these results, we propose a new phone sensing
architecture for energy efficient responsive sleeping (EERS)
on phones, where the sampling and processing of sensor data
is offloaded to a low-power sensor processor. Using a step
counting application running on the LittleRock prototype,
we show that the proposed sensing architecture enables en-
ergy efficient Responsive Sleeping on phones.
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ABSTRACT
Most top end smart phones come with a handful of sen-
sors today. We see this growth continuing over the next
decade with an explosion of new distributed sensor applica-
tions supporting both personal sensing with local use (e.g.,
healthcare) to distributed sensing with large scale commu-
nity (e.g., air quality, stress levels and well being), popu-
lation and global use. One fundamental building block for
distributed sensing systems on mobile phones is the auto-
matic detection of accurate, robust and low-cost phone sens-
ing context ; that is, the position of the phone carried by a
person (e.g., in the pocket, in the hand, inside a backpack,
on the hip, arm mounted, etc.) in relation to the event
being sensed. Mobile phones carried by people may have
many different sensing contexts that limit the use of a sen-
sor, for example: an air-quality sensor offers poor sensing
quality buried in a person’s backpack. We present the pre-
liminary design, implementation, and evaluation of Discov-
ery, a framework to automatically detect the phone sensing
context in a robust, accurate and low-cost manner, as peo-
ple move about in their everyday lives. The initial system
implements a set of sophisticated inference models that in-
clude Gaussian Mixture Model and Support Vector Machine
on the Nokia N95 and Apple iPhone with focus on a limited
set of sensors and contexts. Initial results indicate this is
a promising approach to provide phone sensing context on
mobile phones.

1. INTRODUCTION
The recent explosion of smartphones (e.g., Nokia, Apple

iPhone, and Android phones) with embedded sensors is en-
abling a new generation of personal and environmental sens-
ing applications [1, 2, 3, 4]. These applications are built on
multi-faceted real-time sensing operations that require in-
creasing computation either on the phone [2] or backend
servers [3], or a combination of both [1]. As the demands
of these new distributed sensing applications built on com-
mercial phones is better understood in terms of their needs
for on-phone sensors, computation and communication re-
sources, a number of important challenges are emerging. Be-
cause these continuous sensing applications are extremely
resource hungry in terms of sensing, computation and com-
munications (with backend servers) there is need to drive
the operation of the phone in a more intelligent manner.
We believe efficiently computing the low level context of the
phone, that is, the position of the phone carried by a per-
son (e.g., in the pocket, in the hand, inside a backpack, on
the hip, arm mounted, etc.) in relation to the event be-

ing sensed - which we call the phone sensing context - is a
fundamental building block for new distributed sensing ap-
plications built on mobile phones. These observations have
grown out of our implementation of CenceMe [1] and Sound-
Sense [2], two continuous sensing applications implemented
on Nokia and Apple phones. While there has been signifi-
cant research in the area of context aware applications and
systems, there has been little work on developing reliable,
robust, and low cost (i.e., in terms of energy efficient and
computational costs) algorithms that automatically detect
the phone sensing context on mobile phones. We envision
a future where there are not only personal sensing applica-
tions but we see the mobile phone as enabling global sensing
applications where the context of the phone in relation to
the sensing event is crucially important.

The different context impacts the fidelity of a sensing ap-
plication running on mobile phones. For example, the cam-
era is of little use in the pocket but the microphone might
still be good [2]. Researchers are developing new sensors for
the phones that we imagine will be available over the next
decade, these include CO2 and pollution sensors [5]. If the
phone is carried inside the pocket or a backpack, an applica-
tion relying on CO2 or pollutants measurements would per-
form very poorly given that the phone is not exposed to open
air. A better position for such sensing would be out of the
pocket when the phone is exposed to a more suitable context
for sensing. Similarly, if the accelerometer readings of the
phone are used to infer the person’s activity, the accelerom-
eter would report different data if the phone is mounted
on the arm or clipped to the belt. This is because, given
the same activity, such as walking for example, arm swings
would activate the accelerometer much more strongly for an
arm-mounted phone than on the belt, where the phone os-
cillates more gently. In both cases a mechanism to infer the
context of the mobile phone is needed in order to make the
applications using the CO2 or pollution sensor and the ac-
celerometer, respectively, react appropriately. We envision a
learning framework on the phone that is more sophisticated
than what is implemented today. For example, when sensors
report different sensor readings according to the position on
the body, such as the accelerometer, the application’s learn-
ing engine should switch to different classification algorithms
or sensor data treatment policy in order to meet the appli-
cation requirements.

Today the application sensing duty-cycle is costly because
it is not driven by the phone sensing context, therefore, it is
costly in terms of energy usage for sensing, computation and
potentially communications if the inference is done on the
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backend, as in the case with split-level classification [1]. By
offering system developers accurate phone sensing context
prior to running classification algorithms, very low duty-
cycle continuous sensing application systems are possible.
In this case, the phone sensing context mechanism would re-
frain the application from activating a power hungry sensor
if the context is unsuitable (e.g., don’t activate the pollution
sensor if the phone is not out of the pocket) or it may weight
real-time sensor readings or inferences based on knowledge
of where the phone is on the body (e.g., if the microphone is
needed to measure human activity [2] and it is in the bag).

In this paper, we discuss Discovery, a framework that ad-
dresses the context problem supporting mobile phone-based
sensing with improved accuracy and lower duty-cycle sys-
tems. Discovery is designed to automatically detect the
phone sensing context as people move about in their ev-
eryday lives. Automatic context detection is a primary issue
for mobile phone sensing applications because prompting the
user to provide information about the position of the mo-
bile phone on the body is not a viable and scalable solution.
Phone sensing context is an important building block toward
the successful implementation of personal, social, and public
sensing applications on mobile phones and the work in this
paper, while preliminary, provides important steps towards
the goal of providing reliable phone sensing context. This
paper is organized as follows. Section 2.1 contains the mo-
tivation of this work, while details of the approach taken in
Discovery are discussed in Section 2.2. Preliminary evalua-
tion results are discussed in Section 3. Future directions are
reported in Section 4 and the related literature in Section 5,
before concluding in Section 6.

2. DISCOVERY FRAMEWORK
In what follows, we discuss some challenges phone sensing

context presents, its preliminary design and implementation
as part of the Discovery framework, as shown in Figure 1.

2.1 Phone Sensing Context
Accurate, robust and low duty-cycle detection of phone

sensing context is an important enabler of distributed sens-
ing applications on phones, in particular, continuous sensing
applications that sample sensors, make inferences, and com-
municate with the backend services in real-time.
Assume mobile phones are equipped with pollution, CO2,
or more specialized environmental sensors as we imagine [5].
Measurements from any of these sensors would most likely
be impeded by the presence of clothing or fabric (e.g., phone
inside the pocket or backpack) or by a short time interval
the sensors are exposed to an ideal sensing context (i.e.,
phone in hand or exposed to open air). Therefore, phone
sensing context detection would improve the sensing system
performance. We could stop the system from activating the
sensors when the quality of the sensor data is likely to be
poor (e.g., phone inside the pocket). This would help re-
duce the sensing duty-cycle improving the battery lifetime
of the phone, which continuos sensing application signifi-
cantly limit today (e.g., phones running CenceMe [1] were
initially limited to only 6 hours of operation). We could in-
form the system when a suitable sensing context is triggered
or detected (e.g., phone taken out of the pocket) to maxi-
mize the accuracy and robustness of the sensing application
which would then take advantage of the new context for col-
lecting as many sensor readings as possible. It is evident

the importance of the phone sensing context role in driving
mobile phones sensors duty-cycle lower.

Another reason to provide phone sensing context as a low
level service on phones is to improve the inference fidelity
of distributed sensing applications. Although previous work
[6] shows that it is possible to obtain reasonably good ac-
tivity classification accuracy when using training data from
sensors mounted on different parts of the body, it is not
clear how an activity classifier would perform when the de-
vice is a phone, not specifically mounted (but moving as a
dynamic system), and operates in noisy, everyday environ-
ments that people find themselves in, rather, than under
laboratory test conditions. Many questions remain. Would
training data from many activities and different parts of the
body make a single classification model accurate enough?
To avoid excessively diluting the training data set, would
it not be preferable building a classification model for each
single activity and position of the mobile phone on the body
and then switch models according to the detected phone
sensing context? For example, a system could have a “walk-
ing” activity classification model for when the mobile phone
is in the pocket, in the person’s hand, and in the back-
pack and use one of the models according to the detected
phone sensing context. Results obtained from experimen-
tation in [1] show, for example, that activity classification
accuracy varies when the phone is carried in the pocket or
in the hand. A system that used phone sensing context to
drive the classification model by switching in the right tech-
nique would alleviate this problem. We believe this is of
importance now that smart phones are growing in sensing
and computational capability and new demands are emerg-
ing from different sectors such as healthcare. It is important
to note that in the case of health care sensing applications
it is fundamental to limit the classification error. Sensing
context detection could drive inference model switching in
order to achieve better classification accuracy.
We argue that phone sensing context detection could also be
exploited by existing phone applications and services. For
example, by inferring that the phone is in the pocket or bag,
a caller might be informed about the reason the callee is not
answering the phone call while the callee’s phone ring tone
volume could be increased so the callee might pick up. One
could imagine people enabling this type of additional pres-
ence provided to legacy phone service through Discovery.
By using the gyroscope (which measures the angular rate
change of the phone) to detect the user taking the phone
out of the pocket and moving it upwards, the screen saver
could be disabled and the phone’s keypad made automati-
cally available. One could imagine many such adaptations
of the UI with phone sensing context enabled. Similarly, the
action of moving the phone towards the lower part of the
body could trigger power saving mode. The camera appli-
cation on the phone could be automatically started as the
phone is detected in the user’s hand and moved in a vertical
position, which is the condition that normally precedes the
action of taking a photo. One could imagine phone sensing
context provided by the Discovery framework discussed in
the next section being applicable to many emerging appli-
cations finding their way on to smartphones. For example,
reality mining using mobile phone sensor data is starting to
be explored as an enhanced form of communication and for
social purposes [7].
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Figure 1: Discovery inference steps.

2.2 Design
The idea behind Discovery is to use the entire suite of sens-

ing modalities available on a mobile phone to provide enough
data and features for context discovery at low cost and for
increased accuracy and robustness. Many research questions
arise in response to the challenges discussed above: how do
we combine the input from multiple sensors, such as, ac-
celerometer, microphone, gyroscope, camera, compass, etc.,
to infer the phone sensing context? What are the best learn-
ing approaches and feature selection policies in order to pro-
vide a reliable and scalable context inference system? How
do we design low duty-cycling policies with acceptable ac-
curacy when employing phone sensing context? What is the
inference accuracy and energy cost tradeoff between using
all the possible sensors and only a subset of them according
to their availability on the mobile phone? Which sensor set
is more responsive to the type of noise in the system (i.e.,
classification outside controlled laboratory environments)?
We believe that Discovery in its totality needs to ultimately
address these demanding challenges. However, our prelimi-
nary work focuses on a simple phone sensing context: is the
phone in the pocket or out. This sounds like a trivial context
that could be solved by a number of different sensors. We
focus on the microphone - a powerful and ubiquitous sensor
on every phone on the market - making Discovery suitable
to potentially all phones not just the smart ones. In what
follows, we outline out initial framework design.

Discovery consists of a hierarchical inferences pipeline, as
illustrated in Figure 1:
First Level Inference - Uni-sensor inference: In this
phase, the sensor data from individual sensors is used to op-
erate a first level of inference. Features extraction is tailored
to each sensor. This first inference step provides hints about
the nature of the current phone sensing context, which, how-
ever, might not be conclusive. For example, the use of the
camera or light sensor to infer if the phone is in or out
the pocket could be misleading because a phone out of the
pocket could be in a dark environment, the camera could be
covered by the person’s hand or by the surface where the
phone is positioned. For this reason, a second level of infer-
ence built on top of the first is needed.
Second Level Inference - Multi-sensor inference: In
this phase, the inference process is based on the output of
the first phase. Hence, the first level of inference provides
the features to the second level. At this stage, the combi-
nation of the camera/light sensor and microphone output
would provide better confidence about the actual sensing
context. The accelerometer as well could be used as a hint
to determine if the phone is inside or outside the pocket
given the different accelerometer data signatures when the

phone is in a person’s hand versus when it’s in the pocket.
Similarly, by measuring the angular rate change, the gyro
could provide indications that the phone has been taken out
of the pocket considering that the arm rotation would be
picked up by the gyroscope.
Third Level Inference - Temporal smoothing: In this
phase, temporal smoothing and Hidden Markov Model (HMM)
techniques are used on the output of the second level infer-
ence. This step exploits the correlation in time of sensed
events when a phone experiences a certain context.

2.3 System Implementation
For our initial implementation of Discovery context clas-

sifiers are implemented on the Nokia 95 and Apple iPhone.
The preliminary system implements a set of sophisticated in-
ference models that include Gaussian Mixture Model (GMM)
and Support Vector Machine (SVM) on the Nokia N95 and
Apple iPhone with focus on a limited set of sensors and in-
ferences; that is, we uses the microphone sensing modality
to infer the phone sensing context of in the pocket and out
of the pocket. We discuss our initial results in the next
section. Further modalities, such as accelerometer, com-
pass, and light sensor, are going to be used in combination
with the microphone to infer a larger set of sensing context
as part of our future work. The initial idea is to evalu-
ate which learning technique (between GMM and SVM) is
better suited to the problem and, at the same time, to in-
vestigate the adoption of more than one learning strategy
in concert to perform the final classification. More learning
strategies will be evaluated in the following phase of this
work. The challenge with GMM and SVM is that the phone
has not been developed to run these computationally de-
manding models. Part of our efforts is to implement light
weight versions of these models as a way forward to do more
sophisticated multi-inference classification, as called for by
Discovery. In particular a 20-component GMM is adopted,
where the number of components is chosen by evaluating the
model over the test data set varying the number of compo-
nents and picking the number of components returning the
best classification accuracy.

Feature Selection. The selection of an appropriate set
of features is a key step to good classification performance.
At the moment, a supervised learning approach is adopted
and Discovery relies on a 23-dimensional feature vector ex-
tracted from an audio clip. A richer selection of features
will be evaluated as part of our future work. The current
features are:
1st-19th : Mel-Frequency Cepstral Coefficients (MFCC), which
have been proven to be reliable features in audio signal clas-
sification problems. For the MFCCs extraction we rely on
a well-known Matlab libray [8] which is largely used by the
research community. We also developed a C version of the
MFFC extractor library that can run on the phone;
20th : power of the audio signal calculated over the raw au-
dio data;
21st, 22nd : mean and standard deviation of the 2048-point
FFT power in the 0-600 Hz portion of the spectrum. The
reason for focusing on this portion of the spectrum can be
seen from Figures 2(a) and 2(b), where the presence of a
pattern between the two FFT distributions - for in pocket
and out-of-pocket recording - is clear. It can be seen that
such a pattern is more evident in the 0-600 Hz portion of
the spectrum rather than in the whole 0-1024 Hz range;
23rd : this feature is the count of the number of times the
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Figure 2: (a) FFT power of an audio clip when the phone is inside the pocket; (b) FFT power of an audio clip
when the phone is outside the pocket; (c) Count of the number of times the FFT power exceeds a threshold
T for both the in-pocket and out-of-pocket cases.

Table 1: Sensing context classification results using only the microphone. Explanation: when a result is
reported in X/Y form, X refers to the in pocket case, and Y refers to the out of pocket case. If the column
reports only one value, it refers to the average result for both in and out of pocket. Legend: A = GMM; B
= SVM; C = GMM training indoor and evaluating indoor only; D = GMM training outdoor and evaluating
outdoor only; E = SVM training indoor and evaluating indoor only; F = SVM training outdoor and evaluating
indoor only; G = GMM training using only MFCC; H = SVM training using only MFCC.

Classification results A B C D E F G H
Accuracy 84% / 78% 80% 75% / 84% 84% / 83% 68% 81% 77% / 79% 71%

Error 16% / 22% 20% 25% / 16% 16% / 17% 32% 19% 23% / 21% 29%

FFT power exceeds a certain threshold T. This threshold is
determined by measuring the Euclidean difference between
the count of the in-pocket and out-of-pocket cases and pick-
ing the threshold that maximizes such a distance. An ex-
ample of the count for both the in-pocket and out-of-pocket
cases is shown in Figure 2(c) where it can be seen how these
features can be used to discriminate between the in pocket
and out of pocket cases. The x-axis of Figure 2(c) reports
the number of bins the clip has been split in to.

Consequently, for the mixture model, a 20-component, 23-
dimensional GMM is used. The SVM classifiers adopts the
23 dimensional feature vector.

Training. The training phase is performed using audio
data collected with a Nokia N95 and Apple iPhone in dif-
ferent settings and conditions from a person going through
different environments for several hours. Namely, the audio
is recorded in a quiet indoor office environment and an out-
door noisy setting (along a road with cars passing by). In
both scenarios the phone is carried both in the pants pocket
and outside the pocket in the hand. The choice of these
scenarios, i.e., indoor and along a road, is motivated by the
fact that they are representative of classes of locations where
most likely people spend a lot of their time while carrying
their phone both inside and outside the pocket. For each
configuration 14 minutes of audio are recorded at different
times. Half of each clip (i.e., about 7 minutes of audio)
is used to train the classifiers. The training data is finally
labeled accordingly.

Prediction. For prediction, the remaining half of each
audio clip not part of the training set (i.e., duration of about
7 minutes) is used. Each sample consists of a 96 msec chunk
from which the 23 features are extracted. For each configu-

ration there are about 58000 samples available for training
and 58000 for evaluation.

3. PRELIMINARY SYSTEM EVALUATION
In what follows, preliminary results from using both the

GMM and SVM classification techniques are reported. The
results highlight that the audio modality is effective in de-
tecting the in/out of pocket context with reasonable accu-
racy. Higher accuracy can be achieved by combining further
modalities such as accelerometer and light sensor. Columns
A and B in Table 1 show, respectively, the classification re-
sults for GMM and SVM when the training data combines
both indoor and outdoor audio and the phone is carried in
and out the pocket. The results are quite encouraging, since
we obtain about 80% accuracy (see the accuracy values in
columns A and B) adopting a non sophisticated feature set
and using only one sensing modality, i.e., the microphone.
We are confident that by bringing into the classification pro-
cess more modalities, for example the accelerometer and
light sensor, a more accurate selection of the feature vec-
tor, and temporal smoothing it might be possible to achieve
a much higher classification accuracy. We then train and
evaluate the models for only one scenario, i.e., either indoor
or outdoor. The results using GMM are in Table 1 column
C and column D. The results for SVM are in column E and
column F. In the case of SVM trained and evaluated for the
indoor scenario only (see column E) the accuracy is lower
than the other cases because Libsvm (the well known SVM
library implementation we adopt) is running with the de-
fault settings with the kernel optimization being disabled.
From these results it is interesting to see that training the
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models with both indoor and outdoor data does not dilute
the training data and the final classification accuracy does
not drop significantly compared to the case when the models
are trained for a single scenario only and evaluated for the
same scenario. In fact, the accuracy in columns C, D, and
F is on average close to 80% as in the case of indoor and
outdoor training data set (see columns A and B). Columns
G and H in Table 1 show, respectively, the classification re-
sults for GMM and SVM when the model is trained using
only MFCCs (hence a 19-dimensional feature vector). It is
evident that the addition of the 4 extra features (i.e., sig-
nal power, FFT mean, FFT stddev, and number of times a
threshold is exceeded by the FFT power) boosts the classifi-
cation accuracy. The improvement can be seen by compar-
ing the results in columns G and H with the ones in columns
A and B.

4. FUTURE WORK
After the initial promising results, the goal is to imple-

ment a working prototype for the Android platform as well.
More sensing modalities are going to be used in combination
with the audio modality. In particular, the accelerometer,
magnetometer, and light sensors. Research is going to be
needed in order to identify the most suitable feature vector
elements that combine the characteristics of all the sensing
modalities. Temporal correlation between events is also go-
ing to be taken into consideration to improve the overall
accuracy. Techniques such as HMM or voting strategies will
be taken into account. We will also pursue the idea of letting
people customize the Discovery classifiers to accommodate
their habits and needs.

5. RELATED WORK
In the literature, context awareness follows the definition

that Weiser [9][10] and others [11][12] provided when in-
troducing or evolving ideas and principles about ubiquitous
computing. In that case, context awareness is intended as
either the awareness of situations and conditions character-
izing sensor devices surroundings or the behavior, activity,
and status of the person carrying the sensors in order to
provide smart ways to facilitate and explore interaction be-
tween machines and humans. Thus, context is seen as the
collection of happenings around a monitored subject and the
response of the subject to such those happenings. The work
in [13, 14, 15, 16, 14] are examples of how sensing systems
are adopted to infer such a context and/or leverage context
awareness. In some cases external sensors, i.e., not part of
the mobile phone itself, are also needed [14][13] in order to
perform accurate context inference. The authors of [17] use
the word context to mean location awareness and propose
applications that efficiently build on top of it. A very large
body of work focuses instead on the use of various sensing
modalities such as accelerometer, magnetometer, gyroscope
to infer a person’s activities for different applications [18,
19, 6, 20, 1, 21, 22, 23]. The authors in [24] present an
approach to help discover the position of the phone on a
person’s body. The work highlights two limitations: it uses
simple heuristics derived from a small training data set to de-
termine the classification rules, and it uses a single modality
approach, i.e., the accelerometer. We instead rely on a sys-
tematic design using machine learning algorithms that are
more scalable and robust than simple heuristics and con-
sider a larger training data set from multiple positions on
the body and different scenarios while using a multi-sensing

modality approach.

6. CONCLUSION
In this paper, we argued that phone sensing context is a

key system component for future distributed sensing appli-
cations on mobile phones. It should be designed to be ac-
curate, robust, and low cost. We discussed our initial work
on the Discovery framework that grew out of our work on
the deployment of two continuous sensing applications im-
plemented and deployed on Nokia and Apple phones. Our
initial implementation and evaluation only focuses on a lim-
ited set of sensors/contexts, but looks promising and, as an
idea, it has potential, when implemented in its full form, to
become a core component of future mobile sensing systems.
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ABSTRACT
Participatory phone sensing is a new sensing paradigm that asks
volunteers to contribute their phones’ sensing capabilities and gather,
analyze, and share local knowledge about their surroundings. While
most existing participatory phone sensing systems are standalone
structures without cross-system integration, in this study, we pro-
pose a novel Comfort Measuring System (CMS) for public trans-
portation systems. CMS exploits the GPS and 3-axis accelerometer
functions of modern smart phones to measure the comfort level of
vehicle rides. Then, it mashes up the sensed data with the autho-
rized data of the public transportation system, and provides a de-
tailed comfort statistics as a value added service. Using real data
collected from a CMS deployed in Taipei City, we show that the
system can achieve a high hit rate in trajectory matching of phone
sensed data and the authorized bus data. Moreover, based on the
statistics, we demonstrate that the system is capable of ranking
the comfort levels of the bus services provided by different agen-
cies, and monitoring the comfort levels of the transportation system
overall. The system is also highly scalable without the cost of de-
ploying a sensing infrastructure. We believe that it has the potential
to provide a durable and large-scale comfort measuring service for
public transportation systems.

1. INTRODUCTION
The comfort of rides has been identified as one of the top criteria
that affect customers’ satisfaction with public transportation sys-
tems, and it has been shown that comfort is an important consid-
eration for passengers that use public transportation [16, 20, 21].
However, conventional comfort measuring approaches rely on ei-
ther personal interviews [22] or literature surveys [19], which are
generally labor-intensive and time-consuming, and are thus limited
in terms of scalability and timeliness.

With recent advances in sensing technologies and mobile handheld

∗This research was supported in part by the National Science Coun-
cil of Taiwan under Grants: NSC 97-2628-E-001-007-MY3 and
NSC 99-2219-E-001-001.

devices, participatory phone sensing has emerged as a new sens-
ing paradigm that exploits the sensing capabilities of modern smart
phones to gather, analyze, and share local knowledge about the mo-
bile phone owners’ surroundings [18]. Unlike conventional sensing
systems, participatory phone sensing does not rely on dedicated
sensing infrastructures and the top-down model of data collection.
Actually, it is more penetrative, because it supports grassroots sens-
ing (i.e., the bottom-up model), and it encourages participation at
personal, social, and urban levels [18].

The concept of participatory phone sensing has been implemented
in a variety of real-world applications. For instance, CenseMe
[28] uses the microphone and accelerometer of smart phones to
infers users’ activities and social context. Meanwhile, SoundSense
[27] employs machine learning techniques to classify both general
sounds (e.g., music and voices) and discover novel sound events
specific to individual users in their daily lives. In [17], Azizyan
and Choudhury propose using ambient information (e.g., micro-
phone, camera, accelerometer, and Wi-Fi) to classify the location
of a mobile phone. Nericell [29] employs mobile smartphones for
rich monitoring of road and traffic conditions via an array of sen-
sors (GPS, accelerometer, microphone) and communication radios.
Finally, trajectory sensing applications (e.g., Mobile Google Maps
[8], Waze [6], GeoLife [7], and CarWeb [2]) use the GPS of smart
phones to collect users’ daily life trajectories and provide differ-
ent location-based services as an incentive, such as real-time traffic
reporting [6, 8] and trajectory recommendation [2, 7]. However,
one weakness of these applications is that they are all standalone
systems without cross-domain knowledge and cross-system inte-
gration. As a consequence, they are limited in their ability to pro-
vide value-added services, and they cannot profile large-scale trans-
portation systems as a whole.

In this study, we propose a novel Comfort Measuring System, called
CMS, for measuring the comfort levels of rides on public trans-
portation systems. The CMS system is comprised of three parts:
1) data obtained through participatory phone sensing by volunteers
who sense and score their daily transportation experiences; 2) the
authorized data of public transportation systems, which provides
the reliable, accurate, and detailed information about vehicles in
the system; and 3) a matching algorithm that mashes up the results
of (1) and (2) for further analysis and statistical purposes. Using
the VProbe tool [15] and the authorized bus data provided by the
Taipei e-bus system [14], we deployed the CMS system in Taipei
City. During a 70-day experiment, we collected 425 trajectories,
labeled with vehicle identifiers, from 15 volunteers. Based on the
results, we make the following observations.
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Figure 1: The architecture of the CMS system

1. The proposed trajectory matching algorithm can achieve a
high hit rate of 93.7%, as long as the contributed sensing
data is correct (i.e., without GPS errors) and the trajectory of
the vehicle measured is included in the authorized data.

2. In Taipei City’s public bus system, 4% of the bus rides are
considered comfortable, 17% are uncomfortable, and the rest
are in between the two extremes.

3. There is no significant difference in the comfort levels of bus
services provided by different bus agencies in Taipei City;
and the comfort levels vary a lot among bus services operated
by the same agency.

4. Light buses are more uncomfortable than low-floor and the
standard (single-decker) buses.

The remainder of this paper is organized as follows. In Section 2,
we present the CMS system and a trajectory matching algorithm.
In Section 3, we provide a preliminary set of experiment results
for the CMS system deployed in Taipei City, and we investigate
the factors that affect the comfort levels of public transportation
systems in detail. We then summarize our conclusions in Section
4.

2. THE COMFORT MEASURING SYSTEM
In this section, we present the proposed Comfort Measuring Sys-
tem (CMS) for evaluating public transportation systems. CMS is
comprised of three components: data collected through participa-
tory sensing by volunteers, authorized data of public transportation
systems, and data mashup and statistics, as shown in Figure 1. We
discuss each component in the following subsections.

2.1 Data Collected through Participatory Sens-
ing by Volunteers

The CMS system exploits the capabilities of modern smart phones
to sense commuters’ transportation experiences in a distributed and
participatory manner. CMS does not rely on any particular applica-
tions, and it supports many existing smart phone applications that
provide raw sensed data about trajectories and vibration measures,
e.g., Dynolicious Log Box [5], MobileLogger [11], SensorLogger
[13], Sensor Monitor [12], and VProbe [15].

Specifically, a trajectory is the path of a moving object (i.e., a ve-
hicle) through space. It is usually represented by a set of discrete
sample points on the path with a fixed time interval between every
two contiguous data points. Each data point contains a timestamp

of the sample, and its geographical location information (i.e., the
latitude and the longitude).

In addition, the vibration measures contain a sequence of 3-axis ac-
celerations collected by the G-sensor, which is a 3-axis accelerom-
eter now available in most off-the-shelf smart phones. We let ãx

t ,
ãy

t , and ãz
t denote, respectively, the accelerations sensed at time t

on the X , Y , and Z axes of the smart phone; then we apply the
calibration algorithm proposed in [26] to calculate ax

t , ay
t , and az

t ,
i.e., the real accelerations at time t on the X , Y , and Z axes fixed
to the center of the earth.

We let at denote the acceleration of the moving object estimated
at time t; and following the ISO 2631 standard [24], we obtain the
value of at by

at =
√

(1.4ax
t )2 + (1.4ay

t )2 + az
t
2, (1)

and calculate the acceleration level at time t, i.e., Lt, by

Lt = 20 log
at

aref
, (2)

where aref is a normalization factor with a constant value equal
to 10−5m/sec2 [25]. Then, following [4], we obtain the comfort
index at time t, i.e., Ct, by

Ct =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 , if Lt ≤ 83dB
2 , if 83dB < Lt ≤ 88dB
3 , if 88dB < Lt ≤ 93dB
4 , if 93dB < Lt ≤ 98dB
5 , if 98dB < Lt ≤ 103dB
6 , if 103dB < Lt

(3)

Finally, we calculate the comfort level of a trajectory by averag-
ing all the Ct scores that belong to that trajectory. Intuitively, the
smaller the average comfort level, the more comfortable will be the
transportation experience.

2.2 Authorized Data of Public Transportation
Systems

The CMS system requires the authorized data of public transporta-
tion systems, including the vehicle identifiers (i.e., license plate
numbers), the vehicles’ trajectories, and other miscellaneous in-
formation, such as the agency names, the types of the vehicles, and
the route numbers. By using the identifier and trajectory informa-
tion, the CMS associates commuters’ sensed data with the autho-
rized data (which we consider in the next subsection), and thereby
enables the scoring and ranking of each vehicle in the public trans-
portation system by outsourcing the measurement task to the crowd
(i.e., exploiting participatory sensing by volunteers). Moreover, by
considering other information about vehicle attributes, CMS can
provide more insights into the public transportation system; for ex-
ample, Which type of vehicle is most comfortable? Which bus route
is most comfortable? Which bus agency provides the most comfort-
able rides in the city? In the past, gaining such insights would not
have been possible without the deployment of a large-scale infras-
tructure.
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With recent advances in GPS and wireless broadband technologies,
an increasing number of major cities world-wide have implemented
real-time tracking systems for their public transportation systems,
e.g., Boston (MA, USA) [10], Cambridge (UK) [1], Chicago (IL,
USA) [3], Seattle (WA, USA) [9], and Taipei (Taiwan) [14]; thus,
they provide perfect testing grounds for the CMS system. In this
study, we acquired the authorized data of the Taipei e-bus system
and evaluated the CMS system in Taipei City. However, the CMS
system can be applied in any city anywhere, as long as there are
people willing to contribute sensing data and the authorized data of
the city’s public transportation system is available.

The Taipei e-bus system was deployed by the Taipei City Govern-
ment in 2004. In the system, each participating bus has an on-
board unit (OBU), which is a thin-client with a GPS receiver and a
GPRS interface. The OBU transmits the bus’s information (the bus
identifier, GPS location, and status codes) to the network control
center (NCC) via the GPRS connection periodically (every 15 ∼
25 seconds). In 2010, the e-bus deployment involved 4,028 buses
(including low-floor buses, public light buses, and standard single-
decker buses) covering 287 routes and 15 operating agencies. The
system covers nearly the entire greater Taipei area (i.e., Taipei city,
Taipei county, and Keelung City). There are more than 180 mil-
lion passenger-trips every day. Through our collaboration with the
Taipei City government, we were allowed to download real-time
bus data every minute. On average, there are 3,865 trajectories and
3,235,460 data points each day.

2.3 Data Mashup and Statistics
In this subsection, we present the trajectory matching algorithm,
which finds the most similar trajectory in the authorized data for
a given trajectory contributed by a participant. We let TP k de-
note the k-th data point of the trajectory logged by the participant’s
smart phone (k = 1, 2, · · · , M ), and let TGj

i denote the j-th data
point of the i-th trajectory in the authorized data (i = 1, 2, · · · , G
and j = 1, 2, · · · , N ). Moreover, we define [TP k]∗i as the interpo-
lated data point of TP k on the i-th trajectory in the authorized data
(using linear interpolation and based on the timestamp of TP k).

Then, we define Δi as the trajectory distance between the user-
input trajectory and the i-th trajectory of the authorized data. The
value of Δi is calculated by Equations 4, where dist(∗, ∗) is a dis-
tance function that reports the Euclidian distance between the two
input GPS locations. Finally, the matching algorithm finds the tra-
jectory ĩ that has the minimum Δi value for i = 1, · · · , G, and
regards the ĩ-th trajectory of the authorized data and the user-input
trajectory record as the movement of the same vehicle. Thus, the
CMS system mashes up the comfort level measurement of the user-
input trajectory with the vehicle of the ĩ-th trajectory in the autho-
rized data and manipulates the statistics accordingly.

Δi =

M∑
k=1

dist(TP k, [TP k]∗i ) (4)

ĩ = arg min
i

Δi (5)

3. PRELIMINARY RESULTS
We now present the preliminary results of the CMS system that we
deployed in Taipei City in March 2010. Figure 2 shows a snapshot

Figure 2: The screen snapshot of the TPE-CMS system

Table 1: The hit rate of the proposed trajectory matching algo-
rithm

Results # of trajectories Percentage
Correct 357 84%

No bus data 41 9.64%
GPS errors 3 0.71%

Miss-matched 24 5.64%

of the deployed system, called TPE-CMS1. Using VProbe [15] as
the sensing tool2, we recruited 15 volunteers to collect bus trajecto-
ries in the city. We also asked the volunteers to label each trajectory
with the vehicle identifier (i.e., the license plate number), and then
used the proposed trajectory matching algorithm to compare the
volunteers’ labels with the matching results.

Between March 15 and July 22, 2010, the volunteers contributed a
total of 425 trajectories with labels. From the results shown in Ta-
ble 1, we observe that the proposed matching algorithm can achieve
a hit rate of 84% (357/425) in finding the vehicle identifier of the
user-input trajectory. Moreover, when analyzing the missed cases,
we found that 41 trajectories were missmatched because, according
to the authorized data, the vehicles of the labeled trajectories were
not in service (i.e., the OBUs were not turned on or they encoun-
tered some technical problems). In addition, 3 trajectories were
missmatched because there are obvious GPS errors in the user-
input trajectories. Thus, after discarding the two cases, our tra-
jectory matching algorithm achieved a hit rate of 93.7% (357/381),
which is highly accurate and favorable for the CMS system.

From the results shown in Figure 3, we observe that, among the col-
lected trajectories, only 4% of them were described as comfortable
(i.e., Ct ≤ 3.0), 17% of them were uncomfortable (i.e., Ct ≥ 5.0),
and the rest were in between the two extremes [24]. Moreover, the
results in Figure 4 show that the trajectories of bus agency 7 are rel-
atively more uncomfortable than those of the other agencies, while

1TPE-CMS: measuring comfort levels of Taipei buses;
http://vprobe.org/TPE-CMS/
2The sample rates of VProbe are 1 Hz for the GPS and 40 Hz for
the G-sensor.
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Figure 3: The CDF distribution of the comfort index among the
collected trajectories
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Figure 4: The statistics of the collected trajectories based on
the bus agencies

the trajectories of bus agencies 11 and 12 are more comfortable.
We also observe that the standard deviation of the comfort index
is quite large for most bus agencies. The result indicates that the
comfort index of trajectories is widely spread, and that ‘trajectory
diversity’ (i.e., the difference in the comfort index across trajecto-
ries) does exist within most bus agencies.
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Figure 5: The statistics of the collected trajectories based on
the bus types

We also investigated the impact of bus types on the comfort indexes
of the trajectories. The results in Figure 5 show that the trips on
light buses are more uncomfortable than those on low-floor buses
and standard buses. This is because the light buses serve suburbs
where the routes are usually winding and the roads may not be in
prime condition. Interestingly, the trajectories of low-floor buses
and standard buses have similar comfort index values, which is
counterintuitive to recent reports [23]. The reason is that the low-
floor buses serve urban areas; thus, it is inevitable that they will
stop more frequently to allow passengers to board/disembark. As a
result, there are no significant differences in the comfort indexes of
the trajectories of low-floor and standard buses.

4. CONCLUSION
In this paper, we propose a Comfort Measuring System (CMS) for
public transportation systems. CMS exploits data collected through
participatory phone sensing to measure the comfort level of each
vehicle ride. It then mashes up the sensed data with the authorized
data of the public transportation system to provide detailed insights
into the comfort levels of vehicle rides. Using real data collected
from the CMS system deployed in Taipei City, we validate the pro-
posed trajectory matching algorithm, and show that it can achieve
a hit rate of 93.7%. Moreover, based on the statistics, we show that
only 17% of bus rides in Taipei are considered uncomfortable, and
there are no significant differences between different bus agencies.

29



We also find that the comfort level varies a lot among the bus ser-
vices provided by the same agency, and smaller buses are the least
comfortable vehicles. Work on analyzing other factors that affect
comfort levels is ongoing (e.g., road conditions, drivers’ behavior,
and traffic congestion). We hope to report the results in the near
future.
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ABSTRACT 

Falls are identified as a major health risk not only for the elderly 

but also for people with neurodegenerative diseases, such as 

epilepsy, and are considered as a major obstacle to independent 

living. Fast detection of falls would not only decrease the health 

risks by enabling quick medical response; but also make 

independent living a safe option for the elderly. In this paper, we 

propose a fall detector that uses the accelerometers available in 

smartphones and incorporates different algorithms for robust fall 

detection such as thresholding and wavelet transforms. We 

implemented our fall detector on a smart phone running the 

Android 2 operating system. We performed an extensive set of 

experiments for evaluating the performance of the implemented 

fall detector. To the best of our knowledge, although using 

smartphones for fall detection have been recently studied, 

evaluating the performance of robust algorithms, rather than 

thresholding, has not been explored before. Our experimental 

results show that compared to a simple thresholding algorithm, 

using wavelet transforms achieve better true positive performance 

while decreasing the rate of false positives drastically. Besides the 

fall detection capability, our implementation also provides 

location information using Google Maps about the person 

experienced the fall, using the available GPS interface on the 

smartphone and a warning about the fall and the location 

information are transmitted to the users, such as the caregivers, 

via SMS, email and Twitter messages.  

1. INTRODUCTION 
Falls are risky, especially for the elderly people living 

independently and people with neurodegenerative diseases. 

Studies show that, more than one third of the adult population 

over the age of 65 falls at least once a year in the USA [1]. And 

up to 30% of these falls result in medium to severe injuries that 

can lead to the death of the elderly [2]. Besides elderly, patients 

with neuromotor dysfunction attacks, such as the epilepsy 

patients, suffer from falls during a seizure due to loss of 

consciousness. We currently work on a research project together 

with Istanbul Capa Medical School on monitoring epilepsy 

patients outdoors and aim to detect seizures that result with a fall 

event. Quick medical response is desired in fall situations, but the 

injuries may cause the person to be immobile to the extent that 

they could not even be able to reach a phone to call for help. One 

proposed solution to this problem is to use emergency buttons 

installed throughout the house or on the elderly people themselves 

so that they can press them in case of a fall related injury. 

However, if the person ends up in an unconscious state, he/she 

may not be able to press the button to call for help. Hence, it is 

important to develop an ―automatic fall detection system‖ that 

requires no human intervention. 

World Health Organization (WHO) defines a fall as an event 

which results in a person coming to rest inadvertently on the 

ground or floor or other lower level [3]. Since these events 

involve motion and change of pose, observing certain 

characteristics of these may provide us with the necessary 

information to detect falls. Many types of sensors can be used to 

observe motion and pose of the elderly and determine if a fall has 

occurred or not. Current work on automatic fall detection methods 

can be classified into three main categories in terms of the sensors 

they use: video-based methods, acoustics-based methods and 

wearable sensor-based methods [4]. Video-based methods use 

images provided by cameras installed in the environment and they 

analyze changes in designated features to detect falls (e.g. 

orientation and aspect ratio of a bounding ellipse [5]). Acoustics-

based methods try to detect falls by detecting vibrations caused by 

the impact to the ground. For instance, in [6] Zigel et al. propose a 

method that uses a vibration sensor and a microphone to detect 

vibrations and noise generated by the impact. Wearable sensor- 

based methods involve a sensor worn on the subject. For 

automatic fall detection, methods based on wearable sensors are 

more attractive since video based methods raise privacy concerns 

and acoustics based methods are very susceptible to ambient 

noise. Moreover, video-based and acoustic-based methods require 

wiring and pre-installation, while wearable sensor based methods 

will be able to operate as long as the person wears the sensors, 

even when the user is outdoors.  

With the improvements in mobile technology, the cost of 

smartphones decreased reasonably while their computational 

capabilities increased. With the decline in the prices, many people 

currently use smartphones. Many of these smartphones have 

integrated accelerometers that are used mainly for user interaction 

and orientation detection. In most of these platforms, it is also 

possible to access acceleration signals provided by the integrated 

accelerometer. Such platforms are ideal for developing an 

application that can automatically detect falls and provide a 

warning mechanism.  

In this paper, we propose a fall detection application which is 

developed on a Nexus One smartphone running the Android 2.0 

operating system. The proposed application uses discrete wavelet 

transform as a feature extraction method and uses the differences 

of falls and normal actions in the frequency domain to distinguish 

them from each other. We evaluate the performance of our fall 

detection application using 5 different subjects and with a 

scenario which includes actions that cannot be easily 
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distinguished from a fall, such as jumping or lying on a bed. The 

following are some of the key contributions and findings of our 

work:  

 To the best of our knowledge, although using 

smartphones for fall detection have been recently 

studied [7, 8], evaluating the performance of robust 

algorithms, rather than thresholding, has not been 

explored before. We show that, compared to a simple 

thresholding algorithm, using wavelet transforms 

achieve better true positive performance while 

decreasing the rate of false positives drastically.  

 We conducted an extensive set of experiments on 5 

different users (with different age, height and gender) 

carrying a smartphone and showed that wavelet 

transforms achieve 37% better true positive 

performance.  

 Besides automatic fall detection, our application 

provides location information of the subject using the 

integrated GPS module and also sends a warning about 

the fall and the location information to interested users, 

such as the caregivers, the doctor or ambulance service 

providers, via SMS, email and Twitter messages. 

 

 The rest of the paper is organized as follows: In Section 2, we 

give a brief overview of the related work. In Section 3, we present 

details of the proposed application. In Section 4, we explain the 

experimental setup and present our results. Section 5 draws the 

conclusions.  

2. RELATED WORK 
There have been various studies on fall detection using wearable 

sensors.  In [12], Nyan, et al. propose a pre-impact fall detector 

which uses two sets of sensors, one with an accelerometer and a 

gyroscope and the other with only an accelerometer. They use the 

angular data calculated using the sensors to detect falls before the 

impact to the ground occurs. Although the system yields good 

lead-time, it is vulnerable to normal activities that cause angular 

movement on their sensors. Moreover, the need to use two sets of 

sensors may be uncomfortable for the elderly. 

In [13], Chen, et al. propose a fall detector based on a wearable 

accelerometer. In this work, they assume that a large acceleration 

impulse will occur upon impact to the ground. When such an 

impulse is observed on the acceleration signal, they then calculate 

the orientation of the sensor before and after the impact, and 

check if there has been a change in the orientation. If both 

conditions are satisfied, they detect a fall. 

Another similar approach described in [11], focuses on 

acceleration change characteristics during the process of a human 

body falling. They assume that there are four critical 

characteristics of a falling event: the initial status which is still a 

non-fall state, weightlessness at the start of a fall, impact when the 

human body makes contact with the ground, motionlessness since 

human body cannot rise immediately.  

A major criticism to wearable sensor-based approaches is that, the 

user may forget to charge or wear the sensor, therefore leaving the 

system in a non-functioning state. With the integration of 

accelerometers on smartphones, it has become possible to develop 

fall detector applications that can run on the smartphones. Since 

people are more likely to carry their phones with themselves, 

rather than an additional sensor, smartphones with integrated 

accelerometers can easily be used for pervasive fall detection. 

Similar to our work, iFall [7] is an Android application designed 

for fall detection. However it only uses a basic thresholding 

method for identifying falls. The algorithm uses two thresholds on 

the root-sum-of-squares of the accelerometer’s three axes. The 

lower threshold, which is set to 1g, is for identifying the free fall 

effect and the second threshold, which is set to 3g, is used for 

capturing the spike occurring when the free fall ends with an 

impact. This method generates a large number of false alarms; 

therefore some extra processing is needed. The authors suggest 

using the orientation of the phone, before and after the impact, in 

order to validate the fall decisions. Nonetheless, this method still 

suffers from the similarities in the acceleration signals generated 

by different actions. PerFallID [8] is another application 

developed for Android mobile phones. Again, it uses the 

thresholding mechanism, yet its threshold is adjusted using data 

collected from real users. However, PerFallID does not have 

localization support as well as it is lacking warning mechanisms. 

Therefore in case of a fall, it is unable to inform caregivers or the 

medical personnel about the fall event and its whereabouts.     

Our proposed application is designed to directly address some of 

these issues and yield better detection result. It uses wavelet 

decomposition as a feature extraction method, in order to better 

distinguish falls from non-fall actions. In case of a detected fall, 

our application can inform predefined caregivers about the event 

and the location of the event. With the addition of the panic button 

in the application, the application enables the user to inform 

caregivers about events that cannot be detected by the application. 

3. FALL DETECTOR  
Gathering accelerometer signals with different scenarios and with 

varying system parameters – (including different people doing 

activities that could potentially be confused with falling, i.e. 

walking, jumping sitting, lying on the bed) and analyzing these 

activities in the frequency domain, we realized that the falling 

activity has very distinctive frequency components that could be 

useful to distinguish it from the rest of the activities. However, for 

accelerometer signals whose frequency content varies with time, a 

simple 1-D Fourier frequency transformation is not sufficient. 

Although Fourier transform gives what frequency components 

exist in the signal, it cannot locate the frequencies in the time 

domain. Short Time Fourier Transform (STFT) is a variation of 

Fourier Transform, which tries to overcome this problem. In 

STFT, the signal is divided into windows which can be non-

overlapping or sliding and the Fourier transform is applied to 

these windows. Therefore STFT can localize the frequency 

components to these windows, but its time-frequency resolution is 

limited. 

Another alternative to Fourier transform, which also give 

temporal localization for frequency components is the wavelet 

transformation which has become popular in the last two decades 

in signal processing due to its ability to give better time-frequency 

resolution and existence of fast transform algorithms. 

3.1 Fall Detection Algorithm 
Discrete wavelet transform (DWT) basically yields a multi-scale 

representation of a discrete signal, formed by iteratively applying 

the analysis filters to the original signal. The transformation 

begins with a selection of a mother wavelet, Ψ, from which the 
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analysis filters, h and g, are formed. Then the wavelet coefficients 

of a discrete signal x at the first scale are calculated as: 

                  

 

    

          

                  

 

    

          

where a represents the approximation coefficients and d 

represents the detail coefficients. Due to the nature of the analysis 

filters h and g, approximation and detail coefficients contain half 

of the frequency components of the original signal and therefore 

can be subsampled by two. After the subsampling, approximation 

coefficients can be used to calculate the coefficients for the next 

scale, effectively forming a filter bank: 

                      

 

    

            

                     

 

    

            

where     represents the subsampled approximation 
coefficients of scale s. The process of the wavelet transformation 

decomposes a signal by concentrating the signal energy in a 

relatively small number of coefficients [9]. It is this property of 

reducing a signal to a comparatively small number of components 

that makes wavelet-based techniques potentially powerful for 

signal processing algorithms. A more detailed explanation of 

DWT can be found in [10]. 

In our application, we use DWT as a feature extraction method. 

DWT is applied to the discrete acceleration signal provided by the 

integrated accelerometer, X, in order to extract the detail 

coefficients of X at the first scale. Then a predefined threshold, t, 

is applied to the detail coefficients. If the value of the coefficients 

is above the threshold, a fall is detected. Formally: 

       
       

     
 

 
    

       
     

 

 
    

  

where F(n), is the fall decision for the X[n], and   
    is the 

subsampled detail coefficients at the first scale, and    is the 

floor function. 

3.2 Implementation 
The fall detection application is designed for special use of the 

users who are susceptible to sudden falls like epilepsy patients, 

the elderly as well as slightly cognitively impaired people, such as 

the Alzheimer patients. It incorporates the sensing capabilities of 

the smartphones and sophisticated signal processing techniques to 

produce a handy application that most people may benefit. The 

overview of the application is depicted in Figure 1. It basically 

detects the unexpected fall situations and alerts the caregivers and 

alternatively the followers of the user in a social network, namely 

Twitter. The application is also location aware. The emergency 

messages contain the location information shown on the map. It 

also has a panic button for general use and an emergency alert 

cancellation mechanism is available for preventing false alarms.  
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Figure 1. The overview of Fall Detection Application 

We implemented our Fall Detector application on the Android 2.0 

Platform. Android is an open source mobile operating system and 

it has a powerful Software Development Kit (SDK) based on Java 

Framework. It has also SQLite database management system. The 

core of the application is composed of five parts: 

 Fall Service:  Services are background processes. They are 

designed to run for long durations and they do not interrupt any 

other application or process that the mobile phone runs. The 

―Fall Service‖ is the most important part of the application, 

since it allows the fall detection mechanism to run at the 

background while the user is able to perform other tasks with 

the phone. 

 Fall Activity: Activities are the components with which the 

users directly interact. Activities can be created, started, 

resumed, paused, stopped, and destroyed. An activity is 

associated with a user interface, called layout, in the Android 

application. ―Fall Activity‖ is the visible part of the application 

and it runs on foreground as depicted in Figure 2.  

 Content Provider: Content providers are one of the main 

components of Android applications. All applications can 

access the data by using a single Content Resolver interface. 

Content providers not only provide data to the applications but 

also enable them to share the data among themselves. We use 

the content provider to access the mobile phone’s contact 

database. In this way, we can select the contacts that will be 

called when an emergency occurs. 

 Sensor Manager: ―Sensor Manager‖ allows the application to 

access the sensors of the mobile phone. We use Sensor 

Manager to read the acceleration values of the mobile phone’s 

integrated three-axis accelerometer. 

 Location Manager: By using the ―Location Manager‖, the 

application is able to obtain the periodic updates for the mobile 

phone’s geographical location retrieved by GPS. In this way, 

the location of the user is identified when an emergency 

situation takes place. 

 

Figure 2. Application Screen Shots 
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One of the most important features of the application is its simple 

and efficient interface. There are four large buttons on the main 

screen. ―Start‖ button starts the fall detection service to run in the 

background. ―Stop‖ button stops the service. The tick and the 

cross icons represent the state of the service as being active or 

inactive. The ―Panic Button‖ at the bottom is used for sending 

emergency alerts to the caregivers manually. This can be used for 

when a fall situation is not detected by the service or it may also 

indicate some other kind of emergency condition, such as a 

cognitively impaired person getting lost. The location of the user 

will be delivered to his/her caregivers. The ―Settings‖ button leads 

the user to the settings screen where he/she can select the contact 

details of the caregivers and also the user’s account information. 

There are three types of alerting mechanisms.  

1. The user can select the caregivers to be sent SMS message 

which includes the coordinates of the event. The contact 

information is taken from the database of the mobile phone. 

2. The user can select the caregivers to be sent an e-mail 

which includes the Google Map link of the fall event. The 

information is taken from the database of the mobile phone. 

3. The user may also select the Twitter update option with 

his/her own account. In this way, he/she is able to reach 

more people and one of the closest followers may offer 

help. Figure 3 shows an example Twitter update. 

 

 

Figure 3. The Twitter update after a fall, and the Google maps 

page reached via the link posted in Twitter 

When a fall is detected, a notification is displayed together with a 

sound alert (Figure 4). The users are able to cancel the request 

within a specific time duration which can be configured. We 

selected this timeout duration as 20 seconds which is a long-

enough period for the people who use the phone relatively slower. 

If the user did not experience a real fall, he/she can simply cancel 

the request within the timeout duration. If a real fall has occurred, 

then the caregivers will be immediately alerted by SMS messages 

and e-mails together with the social network status update 

message. This property also helps to solve the problem of 

differentiating phone falling and user falling.  

 

Figure 4. False Alarm Cancellation Mechanism 

4. EXPERIMENTAL EVALUATION 
For our experiments, we used a Nexus One phone with Android 

2.0 operating system installed on it. In the tests, we asked the 

subjects to repeat a predefined motion scenario, which includes 

normal actions such as walking, sitting down and lying, and 

actions that may be challenging to distinguish from falls such as 

jumping and sitting down quickly. 

We conducted the tests on 5 volunteer healthy subjects; each 

subject repeated the scenario 20 times, yielding a total of 100 

sequences which included falls. This data is then processed offline 

in order to evaluate the performance of the fall detection 

algorithm using different mother wavelets. Also in order to better 

evaluate the performance of our proposed method, we 

implemented the method proposed in [7] for comparisons  

 

Figure 5. Images of a subject while he is falling, with the 

phone in his pocket 

The performance metrics we use to evaluate the methods are 

precision and recall. These are defined as: 

       
  

     
     

          
  

     
     

where TP is the number of true positives, i.e. falls that are 

correctly detected by the application, FN is the number of false 

negatives, i.e. number of falls that could not be detected; FP is the 

number of false positives, i.e. false alarms. Table 1 shows the 

recall and precision values of several different mother wavelet 

selections. The values in the parenthesis either represent the 

wavelet class, e.g. D12, or the size of the filter generated from the 

wavelet. 

 

Table 1: Recall and Precision values for different wavelets 

Mother Wavelet Recall (%) Precision (%) 

Daubechies (D12) 88 59 

Morlet (N=36) 89 55 

Meyer (N=32) 85 95 

Gaussian (N=24) 86 46 

Biorthogonal (3.5) 90 50 

It can be seen in Table 1 that while we get good recall results, half 

of the fall alarms generated by the application were false alarms in 

most of the cases. However, we can also see that, use of Meyer 

wavelet produced 85% recall while retaining 95% precision. The 

main reason behind these results can be identified in the frequency 

domain. Figure 6 shows the frequency components of a fall event 

and the frequency components of a non-fall event (sitting down). 

As it can be seen from the figure, the acceleration signals 

generated during a fall have high amplitudes in certain 

frequencies, while other actions do not. Further analysis show that 

Meyer wavelet with 32 sample points acts as a band-pass filter for 
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the frequencies at which falls have high amplitudes. Therefore 

Meyer wavelet can distinguish falls from non-fall actions. 

  

Figure 6. Top: Frequency components of a fall event. Bottom: 

Frequency components of a sitting action  

We also applied the thresholding algorithm proposed by Sposaro, 

et al. in [7], to the data we have collected. Although we have used 

their selection of thresholds as a guide, our final threshold 

selection was made empirically from the data in order to get the 

best case results. Even in this case, the thresholding method 

yielded 62% recall and 33% precision. This means that our 

proposed method performs 37% better than the thresholding 

method in recall and also has three times more resolution. This 

also shows that although the underlying assumptions of the 

thresholding method about the characteristics of a fall event seems 

reasonable, it suffers from the fact that non-fall events can result 

in similar acceleration amplitudes. On the other hand, focusing on 

the frequency components of the acceleration, rather than its 

amplitude, provides better distinguishing power.  

It should be noted here that our scenario includes actions that are 

less likely to be performed by elderly or the people with 

neurodegenerative diseases, such as jumping. Therefore, these 

results can be seen as pessimistic results. 

5. CONCLUSIONS 
In this paper, we presented a fall detector using the integrated 

accelerometers on the smartphones, in which we use the discrete 

wavelet transform as a feature extraction method. As 

demonstrated by the experimental results, using wavelet 

transforms yielded significantly better performance, both 

increasing the true positives by 37% and decreasing the false 

negatives drastically. Our application not only detects falls, but 

also provides a location-aware notification service to caregivers 

and all other interested parties (doctors, ambulance, etc.) through 

several communication channels, such as GSM, e-mail and 

Twitter.  

In future, we are planning to explore ways of incorporating 

information from various scales of wavelet transform in order to 

improve detection performance. We are also planning to conduct 

experiments in which people are also actually using the phones 

instead of just carrying the phones on themselves, in order to see 

the robustness of the application under normal use. 
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ABSTRACT
Smartphones have revolutionized the way in which sens-
ing has been performed traditionally. The people-centric
nature of smartphone-based sensing enables them to be a
part of participatory or opportunistic sensing, where data is
collected on a set of designated smartphones and delivered
to a server. In this work, we identify the existence of an-
other type of behavior, where the data is not delivered but
archived locally on the phones for later retrieval. This type
of behavior is common when the phone users capture some
data (e.g. a video clip) out of their own interest. However,
this complicates the future data retrievals due to the uncon-
trolled mobility of the data-capturing smartphones. Specifi-
cally, the research challenges for later data retrieval include
finding the current locations of the required subset of the
mobile phones that were present in a specific region at a
specific time, without compromising location and identity
privacy of the phone user. We discuss existing as well as
novel architectural alternatives that can be used to address
this problem, along with their qualitative evaluation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed network, centralized
network ; H.3.3 [Information Storage And Retrieval]:
Information Search And Retrieval—search process, selection
process

General Terms
Design, Security

Keywords
Smartphone, Indexing, Sensor Network, Network Architec-
ture

1. INTRODUCTION
Recent advances in the processing, communication, and

sensing resources on smart phones coupled with their ubiq-
uity and ease-of-use have added new dimensions to the tradi-
tional sensing mechanisms [1–4]. For the traditional sensing

∗This research work was funded by Qatar National Research
Fund (QNRF) under the National Priorities Research Pro-
gram (NPRP) Grant No.:08-562-1-095
†This work was conducted while Dr. Abu-Ghazaleh was on
a leave of absense from the State University of New York at
Binghamton.

mechanisms, the focus is on deploying and tasking static or
mobile sensors specifically to fulfill the underlying applica-
tion’s requirements. However, with the advent of human-
carried devices, such as smartphones, equipped with a num-
ber of sensors, such as camera, microphone, accelerometer,
magnetometer, gyroscope, etc., the notion of sensing has
evolved to introduce many new sensing opportunities. Some
of the applications of smartphone based sensing include un-
derstanding information about the user’s context [14], un-
derstanding interactions between people and surroundings [4],
and participating in the potentially large-scale active sensing
operations [3].

The new sensing mechanisms can be categorized into par-
ticipatory and opportunistic sensing, depending on the ex-
tent of peoples’ participation in the sensing activity [6]. Par-
ticipatory sensing generally involves selecting a group of peo-
ple to actively participate in sensing useful data for an appli-
cation [3]. On the other hand, in opportunistic sensing, the
person carrying a smartphone does not need to actively par-
ticipate in the sensing act, but the device itself activates it-
self at the time of appropriate sensing opportunities defined
by an application [5]. While both the approaches differ in
their sensing mechanisms, the subsequent data management
part is still the same – to deliver the sensed data in real-time
or in delay-tolerant fashion to the intended recipient(s).

Although, the real-time data reporting is necessary in a
number of applications [7, 10], where the real-time updates
can be used as alerts or as feedback mechanisms for actua-
tors, in many occasions the data needs to be stored locally
for possible later retrieval. Human-carried phones may store
the data locally because: (1) the data is captured out of the
phone user’s interest, and not because of any underlying
task; (2) the importance of the captured data is unknown,
since, for instance, the data may be redundant; or (3) the
size of the captured data is simply too large to be able to
send it, given the energy and bandwidth limitations of the
smartphone.

In this work, we focus on the cases where data (or event)
is captured by people and stored locally on the smartphone.
In such scenarios, it is necessary to send queries to the de-
sired (or target) phones who could have been present at a
location of interest at a given time, in order to obtain more
information about the event that happened at that location
and time. Examples of such location-time specific queries –
spatio-temporal queries – include: Is there a video footage
available that was captured immediately before or at the time
of an accident, in order to help further investigations? or
simply How many people were present for yesterday’s fire-
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works show? As it can be noted, spatio-temporal queries
may involve querying historical data, and thus, it is neces-
sary to understand the current locations of the phones that
were present at the event site during the event time.

While, spatio-temporal queries over target/event mobility
are supported for the traditional sensor networks [12, 16],
they present a significant challenge for people-centric sen-
sor networks due to the uncontrolled mobility of the phone
users. Specifically, the challenges include obtaining the set of
people who were present in the given spatio-temporal win-
dow (at the given location and the time) of a historic or
an old event, and deducing their current locations in order
to be able to send queries to them. Furthermore, not ev-
eryone who was present at the location of the event would
have captured the required event data. Thus, it is necessary
to reduce the search space by ignoring the mobile phones
who may have not captured any useful information. This
can enable choosing the k most useful mobile phones for
resolving the query. Finally, the data collection operation
should maintain the location and identity privacy of the tar-
get smartphone user. We discuss these challenges in detail
in Section 3.

We present a solution space in terms of the architectural
alternatives to address above challenges for efficiently lo-
cating the target mobile phones. Specifically, we present
and qualitatively evaluate existing architectures as well as a
novel semi-centralized architecture, MobiTrail, that is based
on storing the indexing structure at the intermediate access
points. Details of the existing architectures are presented in
Section 2, while the solution space for architectural alterna-
tives is presented in Section 4. Finally, concluding remarks
and directions for future research are given in Section 5.

2. RELATED WORK
In this section, we present an overview of architectural

aspects of existing works related to smartphone networks.
Opportunistic sensing is a form of people-centric sensing,

where human-carried mobile phones are tasked to perform
sensing activities opportunistically, whenever the application-
driven context requirements are fulfilled [4,5]. MetroSense [7]
proposes a three-tier architecture for people-centric sensor
networks of mobile phones. The lowest-tier consists of mo-
bile phones and static sensors already deployed in the re-
gion of interest. The middle-tier comprises of Sensor Access
Points (SAPs) deployed separately or integrated with the
existing communication infrastructure such as WiFi access
points. The roles of a SAP include sensing, tasking or pro-
gramming sensors, collecting data from them, and providing
secure and trusted interactions with them. The upper-tier
is a server-tier, where one or multiple Ethernet-connected
resource-rich servers act as a core component of the sys-
tem by providing administrative functionalities. BikeNet [8]
also uses opportunistically encountered WiFi access points
for delay-tolerant data communication, while the commonly
available cellular data channel for real-time data reporting.

Participatory sensing [3] enables creating a community-
oriented sensor network that can gather, analyze, and share
the local knowledge. It uses pre-deployed WiFi access points
or cellular network for data collection purposes. Another
form of participatory sensing, Micro-Blog [10], enables smart
phone users to upload the sensory data along with location
and time information. This data can be geo-tagged to enable
viewing the world at a higher resolution. Microblogs are

nothing but the user blogs enriched with sensory inputs such
as multimedia data associated with location and time. Such
microblogs are added to a central database system via the
existing WiFi or cellular networks.

MobiSoC [11] presents a middleware that enables mobile
social computing applications to help people reconnect with
their physical communities and surroundings by leveraging
information about peoples’ locations, and their social rela-
tionships. MobiSoC also presents a centralized architecture,
where people can communicate with MobiSoC via the exist-
ing WiFi network.

Essentially, almost all of the existing architectures use a
centralized approach for data collection, where the sensed
data is uploaded to a central unit periodically or oppor-
tunistically from the mobile phones. The centrally collected
data can in turn be processed/classified and indexed in or-
der to support efficient data-specific query resolution. The
similar approach can be used to enable location tracking of
mobile phones, which is discussed in Section 4.1

Among distributed approaches, location- and/or time-based
query resolution has been studied extensively for traditional
wireless sensor networks (WSNs), however the approaches
presented are mainly for a network of static nodes. Thus,
most of the location-specific indexing approaches are based
on the fact that the data about an event happened at a par-
ticular location would be present at a sensor located at or
nearby that location [12,16]. Such an approach may not be
useful for a smartphone based network, since the phone user
may have moved to another location at the time of the query.
We discuss the challenges associated with smartphone based
networks in the next section.

3. RESEARCH CHALLENGES
The major challenge to locate the target mobile phones

that were present in the given spatio-temporal window arises
from the fact that the mobile phone (i.e. the data storage)
may be moving in uncontrolled mobility pattern. This en-
courages the need to track the phone, which in turn leads to
another problem: preserving identity and location privacy
of the mobile phone users. We now discuss these challenges
in detail.

Which are the target phones? If the location and the
time duration of a historic event is known, then the first step
involved in the query resolution process is to determine the
set of phones that were present at that location at the given
time. For an event that is currently happening, or that has
just happened, it is easily possible to probe the access points,
if they are available in the event region, which in turn can
probe the nearby mobile phones. However, for older events,
this approach may not be useful since the phone user may
have moved to some other location.

Where are the phones located currently? If the
nearby access points stored the information about all the
phones that were in its range at different times, it would be
possible to address the first challenge. However, it is crucial
to understand the current locations of the phones, in order to
access the required data from them, which will not be served
unless the identity privacy of the phone is compromised.

How to reduce the search space? If some of the
phones present at a given location have not captured the
required data, they can be discarded from the search space.
The third challenge focuses on finding the only subset of
phones which may have actually stored the required infor-
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mation, in order to reduce the query resolution cost.
How to maintain location and identity privacy of

the phone users? Allowing the system to track the mobile
phone users, which were not a part of a particular sensing
task or campaign, can raise major privacy concerns. Thus, it
is crucial for the system to ensure location and identity pri-
vacy of the mobile phones. The privacy requirement negates
the possibility of using a trivial solution to learn the cur-
rent location of the target mobile phone, whereby the event-
capturing mobile phone can just report its Id (e.g. its cellu-
lar contact number), along with its location and timestamp
to a server present on the Internet via a nearby WiFi access
point or the cellular data channel. The query-resolution
would then just involve locating the mobile phone with the
given Id, using the regular cellular infrastructure.

Note that these are the initial set of research challenges
stemming from the underlying requirement. However, de-
pending on the solution approach to be used to address this
problem, additional set of, mainly systems-specific, require-
ments can arise, which are out of the scope of this paper.

4. ARCHITECTURAL ALTERNATIVES
Understanding the current location of mobile phones that

were present at a given location at given time is crucial to
support data retrieval from such nodes. This entails a need
to have a suitable architectural support that can enable
efficiently locating the target nodes in a scalable manner,
without compromising the required privacy of mobile phone
user(s). Based on these requirements, we present a design
space in terms of possible architectural alternatives that can
be used for smartphone-based sensor networks. We catego-
rize the architectures into three types: centralized, semi-
centralized, and distributed, depending on where the index-
ing structure is stored. While the centralized approach is
predominantly used in the existing architectures for smart-
phone networks, the semi-centralized and distributed archi-
tectures are hardly explored. We overview the existing cen-
tralized architecture, and present a novel semi-centralized
architecture in detail. We also suggest a solution approach
for employing a distributed architecture for data retrieval.

4.1 Centralized Architecture
In a centralized approach, mobile phones can periodically

update their current locations to a central server via nearby
data collectors, such as WiFi access points, or by using
a cellular data channel [11]. The server can in turn cre-
ate a spatio-temporal index of the mobile phones’ track-
ing data to figure out the phone that was present in the
query-specific spatio-temporal window, and its current lo-
cation. Infrastructural requirements for such networks are
very similar to that of the existing centralized data collection
networks [7, 8, 10,11].

The centralized solutions are beneficial in that the whole
indexing structure is available at one location with the in-
formation about which phone was located at which place at
what time. Thus, it is possible to quickly figure out the set of
target mobile phones that need to be contacted for successful
query resolution. Furthermore, the server can act as an in-
terface between the smartphone network and the end users,
thereby providing a transparent access to the requested data
without compromising the location and identity privacy of
the target smartphones.

However, the benefits of the centralized approach come

at a cost of significant overhead in terms of the bandwidth
and energy usage on the mobile phones. First, each phone
needs to invest its limited energy supply in performing lo-
calization periodically. Localization is a costly operation for
a battery-operated mobile phone due to the involvement of
radio-communication for it. Furthermore, while the GPS-
based localization was observed to provide significantly bet-
ter accuracy (up to 7 meters), the battery life observed (less
than 7 hours) was considerably less than that of the WiFi
or cell-towers based localization schemes, when the GPS was
used continuously [10]. Second, the estimated location of the
phone needs to be communicated via a WiFi access point or
a cellular data channel, which again needs to use power-
hungry radio communication. Additionally, the granularity
of location updates of the mobile phones can significantly
affect the overall battery life. Third, potentially all mobile
phones that are being used as sensors may be used for this
purpose, which will increase the back-haul network’s band-
width utilization considerably, irrespective of the utility of
the updates.

4.2 Semi-centralized Architecture: MobiTrail
In order to address the bandwidth and energy-wastage

problems with the centralized approaches, we propose a novel
semi-centralized approach, MobiTrail, to efficiently locate
the target mobile phones. The key idea is to store the index
at an intermediate (access point) level. Essentially, when a
mobile phone senses an event and stores the data locally,
it notifies a nearby access point to initialize the trail. We
term the access point as a Sensor Access Point (SAP), fol-
lowing the terminology used in the MetroSense Project [7].
The trail can be further maintained by adding entries at
the nearby SAPs as the mobile phone moves away from the
event location. Since, the SAPs could be associated with
the public WiFi access points, it is critical to maintain the
location and identity privacy of the mobile phones. Thus,
the phone’s actual location and its Id (e.g. cellular number)
should never be stored at any SAP. If the trail-maintenance
cost is prohibitive, techniques such as trail-compaction can
be used. Furthermore, techniques to reduce the search space
should be introduced to pre-eliminate the phones that do not
store the query-specific data. We now discuss the MobiTrail
approach in detail.

4.2.1 Trail initialization
When a phone senses new data, which can be learned by

checking if the corresponding sensor is active or not, its in-
tent behind the sensing activity is verified by checking if it
was a part of any assigned task, as in the case of oppor-
tunistic sensing. If the sensing activity was not particularly
tasked, the newly sensed information can be stored locally.
Subsequently, a trail-initialization message containing the
start and end timestamps, and location of the captured event
is sent to a nearby SAP. If an SAP is not available in the
nearby region, the notification is delayed until an SAP is en-
countered during the course of the mobile phone’s mobility.

Note that the MobiTrail also needs to localize the phone,
to in turn localize the event that it is capturing. How-
ever, the localization is performed only when a new event
is sensed, and not periodically as in case of the centralized
approach.

4.2.2 Trail maintenance

38



The phone’s mobility trail is maintained in a similar way
to a doubly-linked-list. Specifically, when a new SAP is
encountered, the SAP notifies the previous (or preceding)
SAP, and adds it as a next hop entry to its routing table
to reach the trail-initializing SAP. The previous SAP adds
the new SAP as a next hop entry for reaching the target
mobile phone. Thus, the phone tracking operation can be
performed by first sending the query to an SAP located in
the desired event location, and following the trail afterwords
to reach the target mobile phone(s). Note that, the query
routing process on the SAP-level can take place in a regular
manner as a packet routing process on an IP network.

If the phone-user is an active participant in the event cap-
ture, further optimizations to reduce the communication for
trail-maintenance can be performed. For instance, if the
event’s importance is progressively decreasing over time, the
granularity of trail-maintenance messages can be reduced ac-
cordingly.

4.2.3 Trail compaction
The complete trail can be removed if all of the sensed

data is delivered to a central server/database as a part of a
query response or manual uploading. Trail removal can be
performed by traversing the trail backwards from the current
location of the phone.

Furthermore, since SAPs are assumed to have a backend
connection with the Internet, intermediate SAPs, whose job
is to just redirect the query to the next SAP, can be elim-
inated from the trail. Thus, the compacted trail for each
event can only have the first and the last SAP on the trail
for that event. Similarly, if a longer trail contains multi-
ple overlapping trails, each for a separate event, then the
starting points of all the trails and the ending point must be
maintained in the compacted version of the trail.

4.2.4 Reducing the search-space
If a query demands for a specific type of event, the search-

space of target mobile phones can be reduced by collecting
meta-information about the event at the closest SAP dur-
ing the trail-initialization phase. The meta-information may
include:

1. Sensors parameters: Sensors parameters can be used
to check if the required sensory input has been cap-
tured. For instance, if a query is interested in a video
footage of the event, the only mobile phones that had
used their cameras can be tracked. Furthermore, if a
query is looking for a specific quality of the event cap-
ture, other camera parameters such as the capturing-
resolution, camera zoom, etc. can be used to deduce
the event coverage quality.

2. Event summaries: The search space can be further
reduced by supplying event summaries (e.g. wavelet
based summaries [9]) to the nearest SAP during the
trail-initialization phase. These summaries can be used
to perform light-weight pre-matching for the query, to
select and track the best matching mobile phones. For
instance, all the mobile phones, who have captured
the event data, may not be required in many cases,
and thus the search-space reduction mechanism can
be used to select the k most matching mobile phones
to resolve the query.

4.2.5 Location and Identity Privacy
The fact that a phone is being tracked without having

appropriate permissions from the phone user, may raise pri-
vacy concerns for the phone users. Thus, it is crucial for
the system to ensure location and identity privacy of the
mobile phones that it will track. Since, the query will be
specific to the event-location, the actual location of the mo-
bile phone capturing the event will never be exposed to the
end users. For query resolution, the query needs to be sent
to a SAP located near the event region, and never to the
mobile phone who has captured the event data. Once the
query reaches the SAP present in the query-specific region,
it can follow the trail to reach the last SAP that can access
the required data from the target mobile phone present in
its communication range. If the target phone is not in the
communication range of the last SAP on the trail, it needs
to wait until it receives a message from the next SAP about
the phone’s presence in its communication range.

In order to maintain identity privacy, we propose to use
event-specific identifiers, instead of phone-specific identifiers.
Essentially, in the trail initialization phase, the SAP gener-
ates a unique event-id for the target phone, and uses it in its
routing table, and also notifies it to the target phone. The
event-id needs to be unique only for the SAP that generates
it. The further SAPs on the trail utilize the same event-id, if
it has not been used by them already. Otherwise, the SAP
generates a new unique Id (unique specific to itself), and
stores a mapping from the old Id to the new Id. If the mo-
bile phone captures more than one events while moving, the
corresponding SAPs store a mapping from multiple event-
ids to a single unique event-id, and assign the new event-id
to the phone.

It is critical to note that the unique Id generation and
maintenance is a difficult, if not impossible, task in case of
the centralized solution, because the Ids are event-specific
and not phone-specific. Since, each phone can participate in
sensing multiple events, potentially huge number of unique
Ids need to be generated and maintained consistently at a
global scale for a centralized scheme. MobiTrail avoids this
problem by making use of the geographically distributed na-
ture of the smart phones and SAPs. Thus, it is significantly
simpler to maintain uniqueness at an individual SAP level,
since the number of phones and the number of events that
can potentially be in a range of a SAP could be very limited.

Although, data privacy is not a focus of this paper, user
level control for tagging data as public or private coupled
with traditional access control mechanisms can be explored [13].

4.2.6 Summary
In summary, MobiTrail provides a semi-centralized way to

locate phones in a given spatio-temporal window. The ad-
vantages of MobiTrail are that it is a scalable, and privacy-
preserving approach. In addition, it also supports optimiz-
ing the query resolution task by using the meta-information
about the desired event, in terms of sensor parameters or
event-data summaries, to pre-classify the most useful tar-
get mobile phones. Finally, the identity privacy ensuring
mechanism is considerably easier than that in the central-
ized approach, which is based on exploiting the geographical
separation of SAPs. The disadvantage of MobiTrail is that
it has a slight overhead of maintaining the indexing struc-
ture at the SAP level, and the phone tracking process may
take a little longer than the centralized approach.
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4.3 Distributed Architecture
In a distributed architecture, indexing structure is stored

directly on the mobile phones. The target mobile phone
search problem is similar in nature with the search problem
in peer-to-peer (P2P) networks. Thus, a distributed P2P
lookup approach, such as Chord [15], can be adapted to
solve the target mobile phone lookup problem, based on a
given key representing the query-specified spatio-temporal
window.

Note that the idea for distributed approach discussed here
is in a preliminary stage, and needs more work to show its
accuracy, while maintaining scalability and robustness for
mobile phones case, which is a part of our future work.
Advantages of using a distributed approach include scal-
ability, and no need for the infrastructure to be in place
to support query resolution. The disadvantages are more
implementation-specific, and may include the lack of identity
privacy for the phone users, and a possibly longer query res-
olution time in comparison with the centralized approach.

5. CONCLUSION AND FUTURE WORK
Smartphone based sensing is being used widely either as a

part of the assigned sensing task, or simply out of the user’s
own interest. Majority of the existing work focused on sens-
ing data as a part of the assigned task, and reporting it in
real-time or opportunistically to the intended receiver(s). In
this work, we focused on the cases where the sensed data is
stored locally on the mobile phones. We identified a prob-
lem of efficiently locating the subset of mobile phones that
have potentially captured data about the historical event of
interest. We discussed research challenges associated with
this problem, and presented a design space aimed at ad-
dressing the challenges. The design space provided a cate-
gorization of the architectural alternatives, including a novel
semi-centralized approach, MobiTrail, to address this prob-
lem, along with their qualitative evaluations.

In future, we plan to quantitatively evaluate MobiTrail
in simulations as well as on a testbed comprising of smart-
phones and SAPs. In addition, we plan to work on devel-
oping the distributed indexing structure for smartphones,
whose solution approach is briefly discussed in the paper.
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ABSTRACT
Nokia Research Center (NRC) in Lausanne, Switzerland has
launched a rich data collection campaign during fall 2009,
the purpose of which is to study user socio-geographical be-
havior, mobility patterns etc. of approximately 200 people.
All sensors on the mobile devices (GPS, microphone, wire-
less interfaces etc.) were frequently activated in order to
grab the most of the user contexts, to be generic enough and
answer the needs of various researchers using the datasets.

The data is as rich as it could be without being too intru-
sive into the volunteers’ lives. We therefore took particular
care in preserving the privacy of the participants, while still
keeping the data useful for the various future analyses. In
this paper we describe the anonymization techniques that
we applied to the data, how we met the principles of privacy
by design, and the legal aspects with the participants and
the researchers.

1. INTRODUCTION
In order to study user behavior, mobility, social interac-
tions etc. NRC launched a data collection campaign in fall
2009 [1]. A number of volunteers were given high-end Nokia
phones, equipped with a special software client capable of
gathering rich data collected from the phone sensors 24/24
hours, 7/7 days, in order to get a deep insight of user activ-
ities. The logged data is automatically uploaded every day
to a database server, anonymized, before being accessible to
researchers.

The collected data includes GPS coordinates (in beginning
of October 2010 we have around 9 million GPS entries in to-
tal), acceleration data(1 million samples), surroundingWLANs
(458K unique WiFi access points; 43M access points seen in
total), BlueTooth devices (414K unique BT addresses; 26M
BT encounters), GSM cells (83K unique cell towers, 25K
in Switzerland; 39M towers seen in total), incoming and
outgoing call (327K calls) and SMS numbers (146K text
messages), contacts list (99K phone book entries), calen-

dar/memo, as well as the media played or being recorded (in-
cluding 47K pictures/videos taken and 120K songs played).
About half of the volunteers opted for sampling the audio
features (497K audio samples). Altogether, we have almost
178M entries in the data base, 194 participants who have
visited 62 countries and collected around one thousand per-
son months of 24/7 data (as of beginning of October 2010).

On the other hand, no content of communication (call, sms),
documents, nor URLs is recorded.

The research interests of the users of the (anonymized) data
base cover a very wide range: from sociologists, to mobility
modelers, socio-geographical analyzers, networking, security
and privacy researchers. The number of new data users and
new areas of interest have been increasing steadily since the
launch of the campaign.

This richness in context data raises many privacy issues, and
defining the anonymization techniques becomes challenging
when it comes to keeping the data as useful as possible, even
for future (not yet specified) research purposes. The details
of our anonymization techniques, their compliance to the
Privacy by Design principles [2], the encountered compro-
mises to be made, and the envisioned improvements are the
main contents of this paper.

The seven principles of “Privacy by Design” (PbD) [2] are:

1. Proactive not Reactive; Preventative not Remedial

2. Privacy as the Default

3. Privacy Embedded into Design

4. Full Functionality - Positive-Sum, not Zero-Sum

5. End-to-End Lifecycle Protection

6. Visibility and Transparency

7. Respect for User Privacy

These principles provide an excellent framework for system
design, especially when privacy-sensitive data is involved.
For most of the principles, the name of the principle gives
already a pretty good idea about what is meant. The princi-
ple of “Positive-Sum” captures the important goal that pri-
vacy protection should not have negative impacts on other
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properties of the system, e.g. usability or performance. The
last principle “Respect for User Privacy” can be seen almost
like a meta-level principle: applying all other principles from
user point of view gives a good basis for complying with the
seventh principle as well. More detailed descriptions of the
seven principles can be found in [2].

In this paper, we use the framework of PbD principles to
analyze how user privacy have been taken into account in
the NRC Lausanne data collection campaign [1]. Section
2 contains a brief discussion of two facets: first, the posi-
tioning of our data set in the vast amount of various data
sets used for research purposes, and secondly, challenges
that are faced when anonymization techniques are used with
privacy-sensitive data sets. In Section 3 we explain details
of our anonymization methods that are in use for the col-
lected data, and we also discuss some legal aspects relevant
for our campaign. Section 4 is organized according to the
seven PbD principles, and we discuss how each principle
has been followed in the data collection. In Section 5, we
present some enhancements to our anonymization mecha-
nisms. These have not yet been put into use but could in
principle be applicable to the present set of collected data.
Finally we give some concluding remarks in Section 6.

2. BACKGROUND
Driven by the increasing success of social networking, the
various businesses behind it, and the increasing capabilities
of smart-phone capabilities in sensing user context [7], many
research groups, operators, and ISPs are now exploring the
potentials of mining rich context data [9, 6]. Even the gen-
eral public begins to be aware of the astronomical amounts
of data that exist in various data bases.

Collecting and opening such data bases for research purposes
definitely comes with considerable work on anonymizing it
in order to preserve the user privacy [5] since it often comes
without the users consent, especially when it is a large scale
data such the ones done by phone operators or ISPs on their
clients [8].

Many of the existing data collection campaigns have spe-
cific focuses like collecting phone usage statistics, identify-
ing groups of people, human behavior etc. separately. In
contrast to those, the data collected in our campaign is
as generic as it can be, limited only by the (already high)
sensing capacities of the phones deployed. From the users
side, no specific research group or research interest was pre-
defined, leaving it open potentially to many groups of re-
searchers with various topics of interest. More details on
our data collection can be found in [1].

Such rich data, even when anonymized, typically leave some
identifiers easily usable to trace back the identities of users
allowing security or privacy researchers to get credit in de-
anonymizing them [10], nevertheless resulting in privacy scan-
dals such as [3].

Building upon the experiences learned from others, and to
enforce privacy-preservation of the users, technical and legal
techniques were put in place for our campaign. Throughout
the data anonymization work we used legacy anonymiza-
tion techniques and primitives, without having to design new

ones. The challenging part, however, turned out to be the
degree to which we should apply anonymization, and still
keep the data useful.

All individual anonymization techniques used here such as
keyed hashing, coordinate truncation etc. can be commonly
found in the literature [5], and are used to anonymize in-
dividual databases. In our case the rich set of data types
imposed specific combinations of anonymization primitives,
applied to a certain degree, in order to keep the data useful.
To fill the gap between usable and perfect anonymization,
legal agreements are done with the researchers, mainly be-
cause of protecting the users’ privacy.

3. ANONYMIZING PIs AND PIIs
In this section we describe our anonymization approach for
Personal Information (PI) and Personally Identifiable Infor-
mation (PII) in the data base.

3.1 What is anonymized and how
With relevance to anonymization, the collected data can be
treated as three different types: GPS coordinates that get
truncated, textual data that get hashed, and acoustic data
that get sampled and shuffled.

By “hashing” an info we mean concatenating the message as
(Key1||info||Key2) then hashing it using SHA256 function.
The use of a hash function provides one-way property: it is
infeasible to compute “info” from the hashed version. This
is a keyed hash construction; without access to the keys it
is neither possible to check whether a specific “info” (ob-
tained, e.g., by an educated guess) leads to a given hashed
version. We did not have the need to use a (slightly more
complex) HMAC construction [12] because we have a fairly
restricted range of use for the function and the data format
and length of all entries in the data base is well understood
and controlled.

“Info” is converted to lowercase beforehand. Note that this
keeps the data consistent, in the sense that data entries that
have differences only for the case will anyway result in equal
hashes. For implementation of these hash functions we used
an SQL library called pgcrypto.sql [11].

GPS coordinates are stored with three different precision
levels; we give each research group access to the one that is
sufficient for their purposes. The different precisions levels
are: complete GPS coordinates, removing the last 2 digits
and rounding (which, in Switzerland, results in an accuracy
of around 110 m in latitude and 80 m in longitude), removing
the last 3 digits and rounding (accuracy of roughly 1 km
for Switzerland). The truncated coordinates result in step-
like paths which increase the ambiguity level. The resulting
ambiguity level depends on the initial geographical area: in
rural areas, the step-like paths can be easily mapped back
to the (only?) road, and the path ends to the (only?) house.
Whereas in dense city centers such truncation results in high
ambiguity levels, proportional to the number of streets/flats
within the output path “step”. An adaptive approach is
discussed in Section 5.

Phone numbers (in phonebooks and caller/callee lists) have
the last 7 digits hashed, while the first ones are kept in
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clear. Such prefixes are useful to identify the regions and to
distinguish mobile phone numbers from landline ones. All
names (of users, contacts in contacts list, caller, callee etc.)
are hashed

MAC addresses (of WLAN, BlueTooth devices) have their
last 6 digits hashed. The first 6 are left in clear text since
they point to the chip manufacturer etc. This provides still
a high ambiguity about the user ID while indicating, for
instance, what kind of devices are in the neighborhood.

SSIDs of WLANs are hashed, since it is common practice
that families or companies set their wireless network SSIDs
similar to their own names.

Other data such as calendar titles and location (text), file-
names of media generated (e.g. pictures), names of folders
(Boxes) for text messages are entirely hashed since they are
typically personalized, therefore likely to reveal PIIs. Phone
IMEIs (i.e. serial numbers) are also entirely hashed.

Acoustic data are recorded in order to help identifying var-
ious environments (e.g. noisy, quiet...) of individual users,
or to distinguish between different locations/rooms of dif-
ferent users in geographical proximity. This data is read
every 10 minutes for a duration of 30 seconds, utilizing
Mel-Frequency Cepstral Coefficients (MFCC) [13]. These
same coefficients are typically used for speech recognizers
and they do not provide alone high enough privacy. In or-
der to increase the privacy level, we randomly shuffle the
time order of the individual parts so that the content or
identity of the speaker can not be detected anymore. In
contrast with the other data types that get anonymized af-
ter upload onto the data base, acoustic data is scrambled
(therefore anonymized) on the user device itself prior to the
upload. After randomization, certain statistical properties
of the acoustic sample are still preserved, and they are suf-
ficient to provide information about the environment.

3.2 What is not anonymized
Names of media played (music, album, track number etc.)
are kept in clear text since it is valuable for user profiling
only when kept so, and these reveal no privacy-sensitive in-
formation in practice. Hashing such information would im-
ply big losses in contextual data for negligible improvements
in privacy.

Cell tower IDs that the mobile sees are kept in clear, and
so is the level of received signal power. Other local system
data such as battery status and level, running application(s),
screensavers etc. is kept in clear.

No transformation is applied to acceleration data.

3.3 Legal commitments from the researchers,
to the participants

As one may infer from the previous description of the tech-
niques, single data types provide little personal information
about the participants, but reverse-engineering gets easier
when more data types are combined in order to reveal the
participant identities or private information.

In order to complement the technical anonymization func-
tions, researchers are tied with legal commitments not to
reverse-engineer the data and keep the participants’ privacy
preserved. Note that unlike many other user data bases that
grant access to any user, accessing NRC data collection is
tied to “Data Sharing Agreements” between the research in-
stitution, the individual users, and Nokia. Prior to granting
access, the purpose of the research is discussed, and the com-
mitments on preserving participants privacy is made clear,
then the legal agreements are finalized. Of course, these
restrictions are somewhat unfortunate because they restrict
the open access to the data set that would of course be ben-
eficial to the scientific community.

On the other hand, prior to filling and signing the consent
forms, participants were carefully informed about the re-
search targets, data collection, storage, transfer, and anony-
mization methodologies used, as well as the awaited benefits.
Furthermore they were trained on how to visualize their (raw
and statistical) data, share it with friends, or how to delete
it, using a dedicated and easy to use web page. Regular
events took place, during which the participants were up-
dated with the above information, the campaign news and
statistics.

The participants have the right to leave the campaign at
any time (which a few of them did, mainly due to the short
battery lifetime or because of leaving the country.) Nokia re-
served the right to exclude participants from the campaign in
the event of non-compliance with the protocol, which never
happened so far.

3.4 The compromises during anonymization
In this section we discuss various compromises done in order
to find the right balance between anonymity and utility. The
two extremes can be briefly described by the two examples:

• High anonymity levels could be achieved by removing
all kinds of identifiers from the GPS coordinates, call
logs etc. This would make it hard to construct e.g.
paths, and therefore reverse engineering of the iden-
tities would also be hard to perform. However, this
would drastically reduce the linkability between calls,
events, coordinates etc. hence degrading the usability
for mobility models, socio-geographical analysis etc.

• High utility and usability levels could be achieved by
leaving contextual data in clear text. Indeed, this
would put the data into a perfect shape for context
analysis (e.g. social interactions). However, reverse
engineering would become an easy task for finding peo-
ple’s identities and their whereabouts.

To avoid drawbacks illustrated by the above examples, some
subtle compromises were to be done for anonymizing GPS
coordinates, and many textual data that can be used as PIIs.

GPS coordinates
One easy option to strongly anonymize the GPS coordinates
would be to (key-) hash them, similar to what was done for
textual data. This still provides identical outputs for identi-
cal inputs, while securing against reverse-engineering of the
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private locations / IDs. Apart from preserving the “same-
ness” property, hashing results in “randomized” coordinates:
inputting a user’s path would output random geographical
jumps, therefore losing the information about speed, prox-
imity, and visited Points of Interests (PoI).

Another option where speed and proximity can be preserved
is the use of linear transformation of the GPS coordinates: a
given path input to the anonymization function results in a
translated/rotated/scaled path geographically distant or dif-
ferent from the initial one, therefore anonymizing “private”
coordinates. This approach has the following drawbacks:

• Most of the movements of people are along roads and
highways rather than arbitrary paths in forests/lakes
etc. Those road shapes are easily identifiable, often
even visually, in the output space, hence making them
easy to reverse and map to the original coordinates.

• Transforming a set of coordinates into another, located
somewhere else on the globe removes all information
of PoIs, which is a useful information component for
many research areas. For instance, a user going from
work, to a bar, then to a cinema, then to home obvi-
ously has a different profile from one going from point
A, to B, to C then D in the middle of the pacific ocean.

Truncating the GPS coordinates provides a good (and very
simple) balance between anonymity and usability. Public
PoIs can be identified as such, then tagged, and stored in
the database.1

Textual data
Leaving the data in clear text easily could make the data
base users, intentionally or not, break the privacy of the
participants. On the other hand randomizing it makes it
completely useless. The adopted hashing technique pre-
serves sameness and the resulting data showed to be still
highly useful to most researchers. However, the similarity
between calendar entries “meeting with John” and “meeting

with Laura” is lost after hashing, and “meetings” are not
identifiable neither. Advanced anonymization techniques
that tackle this problem are discussed in Section 5.

Researchers who are also participants
Another type of compromise is encountered because of the
fact that quite many (although only a small minority of)
campaign participants are EPFL staff/students, among whom
several are also data base users at the same time. These per-
sons have access to their own clear text data on their phones
or over the web interface, and they also have access to the
same data in anonymized form in their role as a researcher.
In principle, this enables them to easily create a mapping be-
tween certain data items and their anonymized counterparts.
As explained in the previous subsection, their role as a re-
searcher prevents them from doing such reverse-engineering
(by contractual means).

The issue is not quite as simple, though. For many research
topics, such a mapping would be quite useful. An example is

1Work in progress.

the name of a static WLAN access point. On the other hand,
de-anonymization of such a static AP in a public place leads
to a minimal privacy violation because, similarly, proximity
to public PoIs is visible in the data base. To avoid situations
where a researcher has a temptation to try de-anonymization
for the purpose of progress in his research work, a reverse
table that maps the anonymized data items back to the orig-
inal form is provided to the researchers in cases where it is
shown that no privacy violations are introduced because of
this. In particular, for the case of WLAN APs, such APs
located at the campus of EPFL can still be identified with
their SSIDs, because a reverse table is provided to the re-
searchers.

4. HOW WELL WE MEET THE PbD PRIN-
CIPLES?

1. Proactive not reactive: the most important point is
that all privacy-sensitive data is indeed anonymized.
Because we have wanted to impose minimal restric-
tions to the nature of the research problems that could
be addressed using the collected data, we have tried to
avoid anonymizing too much. On the other hand, this
kind of “future-proofing”has implied that breaking the
anonymization is possible for a skillful person with suf-
ficient amount of local knowledge about Lausanne and
its inhabitants. Therefore, we have been forced to use
legal type of protection against reverse-engineering:
data access is only provided for researchers who com-
mit themselves to NOT trying to break the anony-
mization. This is also the main reason why we cannot
release the full data set to completely public usage.

2. Privacy as the Default: anonymization is indeed auto-
matically enabled all the time. As explained in the pre-
vious section, there are various levels of anonymization,
especially for location. The default level of anony-
mization is always the strongest and could be relaxed
if the research problem necessitates it.

3. Privacy Embedded into Design: anonymization is a
key feature of the system architecture and the whole
campaign design.

4. Full Functionality: anonymized data is sufficient for re-
search purposes but we cannot exclude the possibility
that some valuable research opportunities are lost be-
cause of it. For instance, providing content of commu-
nication in the data base would certainly have opened
many new vistas for studying users’ contexts (and in
general much better view on the social life of campaign
participants).

5. End-to-End Lifecycle: anonymization and access con-
trol will be enforced throughout the lifetime of the data
base.

6. Visibility and Transparency: users have full view to
their own data and they are able to delete anything
they want. On the other hand, individual accesses to
the anonymized data by researchers is not visible to in-
dividual participants of the data collection campaign.
In principle that kind of transparency could have been
arranged also but it is hard to see what kind of purpose
it would serve.
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7. Respect User Privacy: privacy has been the key ele-
ment in the whole campaign design; the data is (also)
used for creating better privacy protection mechanisms.

5. CAN WE DO BETTER ANONY-
MIZATION?

In this section we give a couple of examples about how
our anonymization techniques could be enhanced while still
keeping them applicable to our setting. Certainly, there are
also other possible directions for improvements, but in this
paper we focus only on these examples.

Regarding GPS coordinates, the future improvement step
could be to adapt the truncation of GPS coordinates to the
densities of roads, houses, and population of the various vis-
ited areas, so as to maintain a constant level of ambiguity,
regardless of whether the area is rural or densely populated.
This, however, requires a rough knowledge of demographics
of the visited areas.

A more challenging improvement is the one for hashing tex-
tual data as hinted in Section 3. So far entire data entries
(e.g. “meeting with John”) were hashed, therefore if another
“meeting with Bob” shows in the calendar, or “John’s Birth-
day”, nothing can be found in common after anonymization:
“meetings” are hard to identify in the agendas, and so is
“John” if his name appears among another text. In order
to improve this and increase utility for researchers, while
maintaining equal levels of privacy, hashing individual words
seems to be appropriate and the hash(“John”) can be identi-
fied in the anonymized data base, whether for “meeting” or
“Birthday”. This comes, however, with several challenges:

• Sentences (i.e. data entries) should not have common
links because of hashes of common words like “with”,
“and”, “or”etc. Therefore such publicly common words
should be kept in clear, or a dictionary of hashes of
common words is written (somehow in analogy with
tagging public PoIs in the truncated GPS coordinates).
This task requires natural language processing tech-
niques, applied to the various languages spoken by
people in the campaign (at least six languages).

• Even the same word (“meeting ...”) may have differ-
ent meanings in different contexts such as in business
or social life. Same word in different contexts results
in different privacy-sensitivities, and therefore anony-
mization techniques should be applied accordingly.

• Especially in the extreme case where every word is
hashed separately we would run into the problem well
known with so-called Electronic Code Book (ECB)
mode of encryption. Indeed, in a large data base,
it would be easy to distinguish more commonly used
words from more rarely occurring words. Furthermore,
after every new word that is inverted/decrypted, the
task of inverting/decrypting the rest becomes easier.

These improvements would clearly help in better under-
standing of user context (increasing utility of the data set)
without degrading anonymity. However, it comes at the cost
of designing proper natural language processing techniques
and applying it to the existing data.

6. CONCLUSION
We showed how we anonymized the data of our rich data
collection campaign. The data set is highly privacy-sensitive
and therefore privacy protection is needed. Because there is
a wide range of research areas that could potentially uti-
lize our rich data, the anonymization and utility have been
carefully balanced. Some legal counter-measures were also
needed against reverse-engineering efforts. We also discussed
potential enhancements to the current anonymization tech-
niques.

We hope our findings and approach can be useful for other
researchers anonymizing other collected data.
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ABSTRACT
Crowd-sourced sensing systems allow people to voluntarily
contribute sensor data from mobile devices. They enable
numerous applications, including weather and traffic moni-
toring. However, their proliferation is at risk if the problems
of data integrity and privacy persist. People will be reluc-
tant to contribute sensitive information if they cannot trust
the system to maintain their privacy, and the system will
be reluctant to accept any data transformed to preserve pri-
vacy without proof that the transformation was computed
accurately. We present an interactive proof protocol that al-
lows an intermediary to convince a data consumer that it is
accurately performing a privacy-preserving transformation
with inputs from trusted sources, without providing those
inputs to the consumer. We provide soundness and correct-
ness proofs for the protocol, discuss its current limitations,
and describe its parameters and their effect on data integrity
and privacy when tweaked.

1. INTRODUCTION
Integrity of the collected data, and the privacy of data

sources are first order concerns for crowd-sourced sensing
systems. Such systems can enable critical applications like
faster emergency response, and improve health, environ-
ment, and traffic monitoring [13, 10, 1]. However, people
will be reluctant to volunteer sensitive information (e.g. lo-
cation, health statistics) if they cannot trust the system to
protect their privacy. Conversely, if the volunteered infor-
mation is first modified to protect privacy, then the system
will be reluctant to trust that modification without proof of
its integrity.

Consequently, integrity and privacy compete with each
other. If the collected data has been previously transformed
to preserve privacy (e.g. mixed, aggregated), then a data
consumer cannot determine the transformation’s integrity
unless the raw data used as input is presented as well. How-
ever, if the raw data is presented, then the privacy of the
data sources gets compromised.

This work attempts to simultaneously provide integrity
and privacy guarantees for published data without signifi-
cantly compromising either. The system model assumes a
set of trusted data sources that collect and forward sensory
data to a privacy proxy, which performs a privacy-preserving
transformation on the received data, and finally forwards the
result to a data consumer. The goal is to assure the data con-
sumer that the proxy indeed computed the expected privacy
transformation using data from expected sources (integrity)

without providing the consumer with that data (privacy).
Much of the existing work on crowd-sourced sensing, with

a focus on integrity and privacy, adheres to this model.
Moreover, such a model has the advantage of decoupling the
privacy transformation from data collection, enabling trans-
formations that mix data from multiple sources, or perform
application-specific data perturbations on the same data.
Examples of this model include our earlier work on the de-
sign and implementation of a Trusted Sensing Peripheral
(TSP) that produces and publishes trustworthy sensory in-
formation to a data portal via the user’s personal mobile
device [5]. The mobile device is allowed to aggregate the
data from the TSP before forwarding it. In this case, the
mobile device can play the role of the privacy proxy, while
the portal plays the role of the data consumer. Other ex-
amples include PoolView [6], which introduces the personal
privacy firewall to perturb a user’s raw data before pub-
lishing it to an aggregation service, DietSense [13], which
provides private storage to a user where she can edit the im-
ages collected from her phone before sharing it further, and
AnonySense [11], which uses a trusted server to mix data
from at least l clients to provide l-anonymity.

This paper presents an interactive proof protocol [9], using
which, only an honest privacy proxy can convince a data con-
sumer that it is correctly computing the expected privacy-
preserving transformation, while protecting the privacy of its
data sources. The key idea is that unlike traditional interac-
tive proofs with one prover (privacy proxy) and one verifier
(data consumer), ours involves a collaboration between the
verifier and an additional trusted party (data source) to keep
the prover in check. We provide soundness and correctness
proofs for the protocol, discuss its current limitations, and
describe its parameters and their effect on data integrity and
privacy when tweaked.

2. PROBLEM STATEMENT
Only an honest privacy proxy P should be able to convince

a data consumer C that it is indeed transforming data Dj =
{d1j , d2j , ..., dnj}, received in interval j, from a set of sources
S = {s1, s2, ..., sn}, using only the transformation function
fpriv. C receives the result pj = fpriv(Dj), but never the
data Dj . The system model is shown in Figure 1.

3. BACKGROUND
Goldwasser et al. [9] introduced the concept of interactive

proof systems where a prover P exchanges messages with a
verifier V and convinces it with high probability that some
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Figure 1: System model

statement is true. As a simple example [2], consider how
Alice proves to Bob that she can distinguish between Coke
and Pepsi. Alice turns her back, then Bob tosses a fair coin,
puts Coke or Pepsi in a glass according to the result, and
challenges Alice to say which drink it is. Alice tastes the
drink and tells Bob which one it is. If Alice cannot actu-
ally distinguish between the drinks, then she has a chance of
being right with probability 1/2. However, when the experi-
ment is repeated k times (each called a “round”) her chances
are slimmer: 1/2k. Thus, when k = 10 and Alice answers
correctly each time, Bob will be convinced with probability
1 − 1/210 or 99.9% that Alice can taste the difference be-
tween the drinks. It is key, that the prover (Alice) not know
anything about the challenge before it is presented to her
by the verifier (Bob). Otherwise, a malicious prover would
answer correctly each time. For example, if Alice secretly
held a mirror and saw Bob flip the coin and pour out the
respective drink, she would simply have to name that drink
once Bob challenges her.

Interactive proof systems must be, a) complete: any true
statement must be accepted by the verifier, and b) sound :
any false statement must be rejected by the verifier (barring
a negligible probability of error). Based on such a proof
system, we have constructed a challenge–response protocol
that allows a privacy proxy (the prover) to prove to a data
consumer (the verifier) that it is honestly performing the
privacy transformation, but without giving the consumer the
inputs to that transformation.

4. THREAT MODEL
Our protocol is designed to prevent a malicious C from

learning about the raw data D from the set of trusted sources
S, and prevent a malicious P from either using a different
transformation: f ′priv instead of fpriv, or different data: D′

instead of D, or both. Since data consumer C has a vested
interest in the integrity of the privacy-preserving transfor-
mation, it is assumed to be an adversary of privacy, but not
of integrity. The privacy proxy P on the other hand is as-
sumed to be an adversary of integrity, but not of privacy.
The reason being, that P may actually be controlled by the
sources themselves, or maybe trusted by them to not reveal
their data. An implication of the above adversarial model is
that P and C do not collude in any way.

We do not consider threats from eavesdropping adver-
saries since standard network security protocols, like TLS,
can easily be used to combat them. We also do not consider
situations in which P , C, and S do not interact sincerely,
implying that neither side suppresses a response expected
by the other. Further, we assume S is trusted, its origin is

anonymized via a mix network like Tor [4], it can perform
anonymous signatures like those described in group signa-
ture schemes [3], and that C honestly executes the protocol
(since C has a vested interest in collecting high-integrity
data). However, C is free to perform offline privacy attacks
on the data received from P . Note that our work focuses on
content, as opposed to, origin integrity and privacy.

5. INTERACTIVE PROOF PROTOCOL
As shown in Figure 1, C collects data, transformed using

fpriv at regular intervals, from sources S, via P . d1j repre-
sents the data sent by source s1 during interval j. Now, in
each interval, C can choose to accept the transformed value
pj as-is, or challenge P to prove pj ’s integrity. This chal-
lenge message marks the beginning of the interactive proof
protocol. In Section 5.5, we discuss our protocol’s parame-
ters that allow C to challenge all received transformations,
or randomly challenge a portion of them.

For simplicity, we explain the protocol using only one
trusted data source, say s1. Consequently, we assume that
data d1j is an m-tuple of raw sensory data values [x1j , ..., xmj ]
collected in interval j. Now, instead of P computing pj =
fpriv(d1j , ..., dnj) as shown in Figure 1, it will be computing
pj = fpriv(x1j , ..., xmj). An example of this single-source
scenario is a location-based service, where instead of send-
ing raw GPS coordinates d1j from s1, P sends a coarser
region covered by those coordinates. The generalization to
multiple sources will be postponed to a more comprehensive
version of this paper.

5.1 Constraints
Our protocol must adhere to the following constraints:

1. The data consumer is never provided with the raw data
d1j . This is the basic privacy requirement.

2. The data consumer should be able to determine with
high probability that:

• The inputs to the privacy transformation fpriv

consist of only those coming from s1.

• No other transformation but fpriv is being per-
formed on those inputs.

3. As implied in Section 3, P must not know the challenge
before it is presented by C. Otherwise, P may tailor
its response to pass only that challenge. The key to an
interactive proof is that an honest prover can pass both
challenges, but a dishonest one can only pass either by
guessing.

4. P must not know beforehand the interval j in which it
will be challenged. Otherwise, it would compute fpriv

correctly only during those intervals.

5.2 Protocol Details
For the protocol to work, we require a shared symmetric

key ksc between the source s1 and the data consumer C,
a buffer at s1 that is large enough to store data collected
in b distinct intervals, and we need to impose the follow-
ing constraint on the transformation function fpriv: given a
function g(r, x) that obfuscates input x using random num-
ber r, we require that

fpriv(g(r, x1j), ..., g(r, xmj)) = g(r, fpriv(x1j , ..., xmj)) (1)
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s1 P C

j = 1: sense x11, ..., xm1

save [x11, ..., xm1], j = 1
s1 → P : x11, ..., xm1 d11 = x11, ..., xm1

P → C: p1 = fpriv(d11) p1

j = 2: sense x12, ..., xm2

s1 → P : x12, ..., xm2 d12 = x12, ..., xm2

P → C: p2 = fpriv(d12) p2

... ... ...

Table 1: Normal Operation

So for example, let g(r, x) = r · x, and fpriv(x1j , ..., xmj) =
mean(x1j , ..., xmj), then:

fpriv(g(r, x1j), ..., g(r, xmj)) = mean(r · x1j , ..., r · xmj)

= r ·mean(x1j , ..., xmj)

= g(r, fpriv(x1j , ..., xmj))

Section 7 discusses the practicality of the above imposed con-
straint and highlights examples of privacy-preserving trans-
formations that indeed satisfy the constraint. We now dis-
cuss the details of the protocol.

Table 1 shows, that while performing its normal sensing
duties, source s1 continues to randomly pick an interval j
and save the data [x1j , ..., xmj ] collected in that interval.
Once the buffer is full (has b intervals worth of data) s1

uniformly and randomly selects an interval of data from its
buffer (Table 2). It then sends one of two sets of messages
to P and C corresponding to each challenge, after which a
simple indicator challenge message from C to P begins the
interactive proof. Once the proof is complete, s1 can purge
the respective interval of data from its buffer, thus making
room for data from the next randomly picked interval. Other
notation includes Eksc , which is some symmetric encryption
scheme using key ksc.

The proof starts when C challenges P about the integrity
of some transformed result pj received in the past (Table 2);
we call this pj a commitment from P . However, which inter-
val j is challenged, is decided by s1 and selectively revealed
to C. The goal is to not let C have j and the obfuscated val-
ues M2 together. Otherwise, it can recover r and therefore
the raw values from s1. What is noteworthy, is that unlike
traditional interactive proofs with one prover and one veri-
fier, ours involves a collaboration between the verifier C and
an additional trusted party (the data source) to keep the
prover P in check.

There are two types of challenges and associated tests that
take place. Message M1 corresponds to the first type of
challenge, while M2 to the second type. The first type is
designed to test the integrity of P ’s past commitment, while
the other tests the computation of fpriv itself. The padding
PAD assures that M1 and M2 have the same length. The
encryption further ensures that the messages are statistically
similar. That way, a malicious P intercepting message M1

or M2 will be unable to discern them and hence, not know
which type of test will be performed by C.

Intuitively, the protocol is trying to ensure that C does
not have r or j, and the obfuscated message M2 together
in any given interval j. Otherwise, C could first recover r
using the property in Equation (1), and then recover s1’s raw
data values from M2 (remember that g(r, x) only obfuscates

x, and is not a cryptographic one-way function).
At the same time, the protocol wants to ensure that P

does not know what type of test is going to be performed by
C. Otherwise, P might tailor its response to pass only that
test. For example, assume that in each interval, a malicious
P fabricates the transformation it sends to C. Also assume,
that it caches all raw data values ever received from s1, and
computes and caches (but does not send to C) the correct
pj for each interval as well. Now, suppose it knows that
challenge 1 is underway. Then, it computes p as required
by the challenge, recovers some r (not necessarily the right
one) using p = g(r, pj) for some interval j, extracts each
raw value from the obfuscated message M0, and compares
the set of raw values with those cached for that interval. If a
match is found, P knows it has the correct j and therefore r,
otherwise it picks another interval j and repeats this process
till a match is found. With the correct value of r, it can
provide C with the expected response p and pass challenge
1 each time. Now, if P did not know which challenge was
underway, then the above attack (called the find-r attack)
can only pass challenge 1 but not challenge 2. So, with
probability 1/2 a malicious P ’s response to the challenge
would be rejected by C. However, an honest P ’s response
could simultaneously pass both tests.

5.3 Analysis
Without going into details, we now point out that our

protocol satisfies all constraints mentioned in Section 5.1,
but the second one. The second constraint can be satisfied
by parametrizing the protocol, and this is discussed in the
next section. We now show that our interactive proof is
complete and sound.

Completeness is easier to prove. From Table 2, we can see
that any honest P that computes and publishes fpriv(d1j),
and then fpriv(g(r, x1j), ..., g(r, xmj)) when challenged, will
indeed pass either of C’s integrity tests with its response p.

We prove soundness by case analysis. But first, we can
safely assume that g(r, x) is honestly computed. Since dur-
ing either challenge, one honest party, C (honest with re-
spect to executing the protocol) or s1 (trusted), computes
g. Thus, if P computes some g′ instead of g it will fail ei-
ther challenge. There are three cases we must consider: P
may use fabricated inputs to the transformation fpriv, may
use the wrong transformation, or both. Throughout, we will
refer to notation used in Table 2.

Case 1. Fabricated inputs: If a malicious P publishes
pj = fpriv(d′1j) instead of pj = fpriv(d1j), then during the
challenge it must still prove to C that p = g(r, pj). If it
honestly computes p, then this check will fail. If P mounts
an attack similar to find-r described in Section 5.2, it can
pass C’s first test, but not the second. Since in the second
test, M2 comes directly from the trusted source s1.

Case 2. Wrong transformation: If a malicious P is
computing f ′priv(d1j) instead of fpriv(d1j), then to pass ei-
ther test, f ′priv must share the same relationship with g that
fpriv does (Equation (1)). Now say that it does, then P
could pass C’s first test, but again, not the second one. Since
in the second test, C itself computes fpriv. Also, P ’s find-r
attack suffers the same fate.

Case 3. Wrong inputs and transformation: If a
malicious P is computing f ′priv(d′1j) instead of fpriv(d1j),
then the find-r attack could pass test 1, but not test 2.
Since in test 2, C computes fpriv with trusted inputs from
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s1 P C

From b saved intervals, randomly pick j
Then, pick random number r
Then, with probability 1/2, either send:
s1 → C: M1 = Eksc (r, j, PAD)
s1 → P : M0 = g(r, x1j), ..., g(r, xmj)
OR send:
s1 → C: M2 = Eksc (g(r, x1j), ..., g(r, xmj))
s1 → P : M0 = g(r, x1j), ..., g(r, xmj)

M0 M1 OR M2

On receiving challenge, ← Challenge P
p = fpriv(M)
P → C: p p

Test 1 (if received M1):
r, j, PAD = Dksc (M1)
if p 6= g(r, pj), reject

Test 2 (if received M2):
if p 6= fpriv(Dksc (M2)), reject

Table 2: Interactive proof of integrity for privacy-preserving transformations performed by P

source s1.

5.4 An Attack on Privacy
It is possible for C to launch an offline privacy attack

on the g(r, x1j), ..., g(r, xmj) data values it receives during
challenge 2. As mentioned before, g is only assumed to be
an obfuscation function that can easily be reversed. Leading
to ways in which r could be retrieved, and then possibly the
raw data values xij , 1 ≤ i ≤ m.

This attack is the same as find-r described earlier, but
without the cache of raw trusted data values from the source.
Without this cache, C will not know if the retrieved raw
values are actually correct. It would have to guess if the
retrieved raw data values seems “plausible”. This attack can
be mitigated by increasing the number of possible choices
from which to guess. We discuss this further in Section 5.5.
In the worst case, C could obtain raw data values for 1/2 the
number of intervals in which it challenges P . Furthermore,
the plain-text guessing required in this attack may require
human intervention, making this attack more costly.

5.5 Parameters
Table 2 describes only one round of the interactive proof.

Using multiple rounds, C can gain more confidence in the
integrity of the published value pj being challenged. Further,
by challenging more often, C can gain more confidence in
the integrity of the data stream in general. Based on such
observations, we have defined the following parameters:

• h: the percentage of intervals that C will challenge
P . So, if h is 20%, then C will randomly challenge P
during one of every five intervals. Note that s1 must
know h as well, since it initiates the challenge. A larger
h, will provide more integrity, but will reduce privacy
since C will receive more obfuscated values that it can
potentially attack offline.

• k: the number of rounds each interactive proof is ex-
ecuted. As mentioned in Section 3, with k = 10, C
can have 99.9% confidence in the integrity of the pub-
lished value being challenged. Closely related to k, is
an interesting metric we call the confidence index of

P : defined as the number of challenges P has passed,
over the total times challenged. When k is low (say
1, i.e. 50% chance a published value is incorrect), and
P ’s confidence index is high (say 100%) then C can
still be sure about the integrity of the already pub-
lished values from P . However, if P ’s confidence index
is low, then C can choose to increase k and at least
gain more confidence each time it challenges P .

• b: the number of intervals of data that s1 needs to save
before initiating challenges. Increasing b can mitigate
the privacy attack discussed in the previous section.
It will increase a malicious C’s ambiguity about the
correct inputs to fpriv that might have created a given
pj . For a given interval j, C would have to choose
between b/h possible sets of inputs. For example, if
b = 1000 and h = 1/5, then C would have to guess
the right inputs from 5000 possible ones. In the worst
case, C can retrieve h/2 intervals of raw data.
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Using parameters h and k we have the following equation
for the expected number of intervals E(N) before C detects
a malicious P . Here, P is fabricating a transformed value
pj with probability q.

E(N) =

∞X
n=1

n× (1− hq(0.5k))n−1 × hq(0.5k) (2)

Plots of E(N) while varying either h or k are shown in Fig-
ures 2(a),2(b). When h = 20%, q = 10% a malicious P is
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expected to fail a challenge in 100 intervals, and publish 10
fabricated transformed values. Also, by setting k = 3 (in-
stead of k = 1) we can reduce time to detection by ≈ 40%.

6. RELATED WORK
Much of the previous security oriented work in crowd-

sourced sensing has focused either on data integrity, or pri-
vacy. PoolView [6] enables community statistics to be com-
puted using perturbed private data, but trusts its users to
honestly perturb that data. PriSense [14] employs data
slicing and mixing to provide privacy while still support-
ing a wide variety of aggregation functions. However, it is
assumed the functions themselves are honestly computed.
Our previous work on Trusted Sensing Peripherals [5] sup-
ports high-integrity aggregation, but does not provide pri-
vacy guarantees.

VPriv [12] makes a strong attempt to offer integrity and
privacy for computing tolls over paths driven by vehicles.
However, due to the use of an additive homomorphic com-
mitment scheme, VPriv can only guarantee the integrity of
additive functions. Additionally, the random spot checks
needed to keep drivers honest may compromise privacy.

Fully homomorphic encryption schemes (addition and mul-
tiplication operations supported over ciphertexts) could go
a long way in solving the integrity and privacy problem.
The first such scheme was recently introduced by Gentry et
al. [7]. However, computation on ciphertexts is still widely
considered to be computationally expensive.

7. LIMITATIONS
It remains to be seen what types of privacy-preserving

transformations can work with our protocol, given the con-
straint in Equation (2). We have shown that a transforma-
tion computing the mean of its inputs can be used. Other
transformations we plan to investigate include mixing data
from multiple sources to provide k-anonymity [15], and pos-
sibly location blurring.

Interactive proofs require their participants to be online.
Hence, the data sources need to be online while the proof
is taking place. Future work could include constructing a
non-interactive proof that achieves the same goals.

Interactive proofs can be zero-knowledge [8] if no other
information but the truth of the statement being proved is
revealed. Unfortunately, our protocol falls short of this goal
because data privacy could possibly (not surely) be compro-
mised by a malicious data consumer (see Section 5.4).

8. CONCLUSION
Crowd-sourced sensing has a bright future, but both the

integrity of the collected data, and the privacy of data sources
are always at risk. Without integrity assurances, data con-
sumers like the government or researchers will be reluctant
to use the data, and without privacy assurances, people will
be reluctant to contribute the data.

We have proposed a possible solution using interactive
proofs that simultaneously addresses the conflicting prob-
lems of integrity and privacy. The interactive proof allows
an intermediary to convince a data consumer that it is accu-
rately performing a privacy-preserving transformation with
inputs from trusted sources, without providing those inputs
to the consumer. Sources can be trusted when, for example,
they provide verifiable attestations to the integrity of sensed

data with the aid of integrated trusted platform modules [5].
The key idea is that unlike traditional interactive proofs with
one prover (privacy proxy) and one verifier (data consumer),
ours involves a collaboration between the verifier and an ad-
ditional trusted party (data source) to keep the prover in
check. We have provided soundness and correctness proofs
for the protocol, discussed its limitations, and described its
parameters and their effect on data integrity and privacy.
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ABSTRACT
In this paper we present an approach to support privacy
in opportunistic sensing. In particular, we use compact and
privacy preserving representations of data (or sketches), that
allow us to compute relevant statistics over data without
disclosing users’ sensitive information (e.g. locations). We
exemplify our approach by referring to the important appli-
cation of noise pollution monitoring. We present preliminary
experimental results showing that sketches can actually be
employed to produce accurate environmental maps, at the
same time preserving users’ privacy.

1. INTRODUCTION
Opportunistic people-centric sensing [12] has been gaining
popularity, with several systems and applications being pro-
posed to leverage users’ mobile devices to collectively mea-
sure environmental data. In such systems, nodes report sen-
sor data through opportunistic network connections, such
as third-party access points. However, people centric sens-
ing generally suffers from privacy related issues, namely the
need to share data provided by users without disclosing any
sensitive information about user’s privacy (e.g., locations).

In this paper we present an approach to support privacy in
opportunistic sensing. In particular we use sketches, namely
compact and privacy preserving representations of data, that
allow us to compute relevant statistics over the data with-
out disclosing users’ sensitive information. The proposed
techniques can be exploited in several application domains
such as environmental monitoring, analysis of social pat-
terns, traffic maps etc. Here we exemplify our approach
referring to the relevant application of noise pollution mon-
itoring.

The Directive 2002/49/EC of the European Parliament has
made the avoidance, prevention, and reduction of environ-
mental noise a primary issue in European policy and the
Commission required Member States to provide accurate
noise pollution maps. Today’s noise measurements are mainly
carried out by designated officers that collect data in a lo-
cation of interest. Even if this assessment procedure is still
compliant with European regulations [9], it often fails to
provide scalable and accurate estimations of the real noise
pollution levels. Nowadays, the applicability of fixed wire-
less sensor networks [10] to wide area long-term monitoring,

∗Partially supported by EU STREP Projects ICT-215270
FRONTS, ICT-257245 VITRO and by PRIN 2008 research
project COGENT.

is still limited due to its high installation and maintenance
costs.

2. RELATED WORK
People-centric sensing [7][8] has leveraged the use of human
carried devices (such as smart-phones) to sense information
directly or indirectly related to human activity or environ-
ment, in an opportunistic or participatory way. The Met-
roSense project [14] is working with industry and agencies
to develop new applications, classification techniques, pri-
vacy approaches, and sensing paradigms for mobile phones
enabling a global mobile sensor network capable of societal-
scale sensing. Most related to our reference application, the
NoiseTube [13] project has developed a novel platform for
the monitoring of urban noise pollution, based on mobile
phones. The same approach has been followed by the Nois-
eSpy [11] project in which noise maps are built on the basis
of data coming from users’ devices in a participatory way.
Both these projects require users to agree and share infor-
mations regarding noise levels measurements, together with
their position in order to allow geotagging to an external
system. While both these works demonstrate the feasibil-
ity of the use of smartphones/cellphones as sound meters,
their platforms suffer of a major lack of privacy for involved
users, thus allowing an attacker to trace users’ movements.
Privacy preservation in location based services has already
been addressed by [16, 15]. In [15], accurate traffic speed
maps in a small campus town are build from shared GPS
data of participating vehicles, where the individual vehicles
are allowed to “lie” about their actual location and speed
at all times. In our approach, data are always correct but
represented in a compact and privacy preserving way (i.e
sketches). Differently from [16], where data are available in
clear to the intended receiver, in our work sketches allow
a central authority to select relevant traces to reconstruct
an accurate map, but without revealing to anybody (central
authority included) relevant information on users’ positions.

3. SYSTEM OVERVIEW
Taking inspiration from the NoiseTube [13] set-up, we aim to
leverage user’s smartphones to sample the environment and
provide collected data to a central authority. Nevertheless
contrary to NoiseTube, our solution is based on opportunis-
tic monitoring and explicitly considers privacy preservation
a primary concern to actually encourage users’ participa-
tion. Nowadays mobile phones are personal devices, primar-
ily intended to serve the user with telephony, messaging and
other functionalities. Additional services like noise monitor-
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Figure 1: System Overview

ing cannot be considered of primary importance, and thus
people would likely not support them if they will negatively
affect the behavior of the “primary” services. For this rea-
son, we think a mobile phone application should be transpar-
ent and communicate opportunistically whenever users get
connected for their own purposes. This approach strongly
limits the availability of real-time data, because data are
only transmitted whenever a connection is available. How-
ever, for the statistical purposes of the noise monitoring ap-
plication we are discussing here, this is not a major prob-
lem. Instead, we do believe that a mandatory requirement
to achieve a significant users’ participation is the preserva-
tion of their privacy. Sampled data must be geo-referenced
to be of some utility, as a consequence users’ movements
could be easily traced with a serious loss of privacy. Thus, a
privacy preserving representation of data is needed, but at
the same time, operations on sampled data should be still
possible to the central authority, in order to select relevant
samples among the whole amount of received data for each
inquiry. The noise monitoring service we envision, foresees
the participation of three main actors: mobile users, central
authority and system users. Mobile users are responsible
for noise data collection. They participate to the service
by running a noise monitoring application on their phones
(see section 3.1). This application exploits the on board mi-
crophone to sample environmental data while the phone is
idle, so as not to affect phone’s normal usage. Whenever
the user establishes a connection, environmental data are
opportunistically sent to the central authority which is in
charge to elaborate statistics and to answer queries issued
by system users on the average noise level in an area of
interest.

More in detail, we consider n users moving in an area U and
collecting traces on environmental noise. The trace gen-
erated by user i, denoted by Ti consists of a set of pairs
< nt

i, p
t
i > where nt

i and pti are respectively the observed
noise level and the location of the user in U at time t. Let
Pi = {pti}, ∀t and Ni = {nt

i}, ∀t, be respectively the set of
positions (i’s position set) occupied by the user over time
and the corresponding set of noise levels (i’s noise set). We
stress that, in order to guarantee users’ privacy, Pi should
not be disclosed to third parties, including the central au-

thority, and thus it should be represented in a suitable pri-
vacy preserving format. Instead, the set of noise values must
be publicly available, since it is used for the estimation of the
average noise level. To achieve this, user i sends to the cen-
tral authority the pair (Sk(Pi), Ni), where Sk(Pi) is a sketch
(i.e., a suitably generated compact summary) of Pi. In Sub-
section 3.2 we show how to generate Sk(Pi) so that it has
the following properties: i) Sk(Pi) represents Pi implicitly
in small space (in the order of 102 bytes at most) and does
not allow to infer Pi; ii) considered any area I of interest,
Sk(Pi) allows the central authority to estimate the extent
to which the set Pi of i’s positions covers I. Note that this
is achieved using only Sk(Pi), so that Pi is never explicitly
disclosed to third parties. All users’ traces T = T1, T2, .., Tn

are made available to the central authority according to the
mechanism described above. This, in turn collects the traces
and performs elaboration to answer queries issued by system
users concerning the average noise level in any area I ⊆ U
of interest. Let’s denote by Q(I) the query asking for the
average noise in area I. Upon reception of Q(I), the central
authority selects the minimum number of Pi’s guaranteeing
coverage of I and then calculates the average noise level over
time in that area. This is the classic set cover problem , but
contrary to classic set cover we have to enforce some kind of
privacy preserving technique to encourage users participa-
tion to the monitoring activity. In order to select the mini-
mal subset of user traces that cover I, the central authority
uses the techniques described in Section 4. In performing
this computation, it only uses the sketches Sk(Pi) of users’
position sets and not the position sets themselves.

3.1 Mobile phones as sound meters
The feasibility of using Mobile phones as sound meters has
already been discussed in [13, 11]. Both these works, pre-
sented a mobile phone application that, requiring user par-
ticipation, logs sound pressure values using the onboard mi-
crophone and some correction algorithms, thus obtaining
a limited estimation error. Shifting from participatory to
opportunistic monitoring, additional challenges have to be
discussed. In opportunistic contexts indeed, sampled values
can be affected by errors generated by external and unpre-
dictable noise sources. As an example, consider a user carry-
ing the mobile phone in her pocket: noise values could suffer
from attenuation effects or spikes due to the noise generated
by objects in the pocket (e.g., coins, keychains, voices). In
such a scenario, an additional filtering technique is needed
in order to obtain more accurate data. We defer the study
of these aspects to future work, and here we focus on the
evaluation of our system from an algorithmic point of view.

3.2 Privacy preserving data representation
As discussed before, in the application we envision, a user
only sends a compact summary of her position set, from
which it is hard to recover the original set. In this section
we present a class of sketches [6, 5, 4] that, while compact
and addressing the privacy issues mentioned above, allow
the (approximate) implementation of some basic primitives
on sets (such as union and intersection) that are required
to implement the algorithms presented in section 4. In the
rest of this subsection we present techniques used by mo-
bile users’ terminals to produce compact summaries of their
respective position sets.
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Compact representation of sets: We only briefly outline
the principles underlying the technique we propose, leaving
out many theoretical aspects for the sake of brevity. The
interested reader can refer to [6, 5, 4]. In the remainder
of this subsection, we consider without loss of generality
subsets of [n] = {0, . . . , n− 1}, for a suitable integer n. We
briefly note that standard techniques allow us to reduce to
this situation in all practical cases1.

Assume we have a family H of hash functions such that: i)
every h ∈ H produces a permutation of [n]; ii) if h is chosen
uniformly at random from H the following holds: for every
set S ⊆ [n]:

P[x = arg min(π(S))] = 1/|S|, ∀x ∈ S.

Such a family is said minwise independent [4]. In practice,
minwise independent hash functions are hard to generate,
since they require a high number of truly random bits. In
this paper, we use functions of the form h(x) = ((ax + b)
mod c) mod n [3], that excellently approximate minwise in-
dependent families. Here, c is a large prime (e.g., the well-
known Mersenne prime 232 − 1) and n is the number of
possible locations in U . Finally, a ∈ {1, . . . , c − 1} and
b ∈ {0, . . . , c− 1}.

Sketch generation and maintenance: Considered any
subset S of [n], we construct its sketch as follows: for m
times, we choose, independently, uniformly and at random, a
hash function from a minwise independent family. Let Hi(x)
the i-th function chosen and let mini(S) = minx∈S Hi(x).
Then Sk(S) = {mini(S), . . . ,minm(S)}. In our case, we
consider hash functions of the form h(x) = ((ax+b) mod c)
mod n. In practice, generating such a hash function means
generating a and b uniformly at random from {1, . . . , c− 1}
and {0, . . . , c− 1} respectively.

Sketch properties: Given sets S1 and S2, the sketch of S1∪
S2 can be immediately obtained from Sk(S1) and Sk(S2)
as follows: Sk(S1 ∪ S2) = {M1, . . . ,Mm}, where Mi =
min{mini(X1),mini(X2)}. Another interesting property of
these sketches is that they allow to easily and accurately esti-
mate the Jaccard coefficient of two sets, a standard measure
of the similarity between sets, widely used in information
retrieval. Given two subsets S1 and S2 of [n], their Jaccard

coefficient is defined as J(L(S1), L(S2)) = |L(S1)∩L(S2)|
|L(S1)∪L(S2)|

.

It can be shown [4] that for every S1, S2 ⊆ [n]:
P[min(π(S1)) = min(π(S2))] = J(S1, S2). This suggests a
simple statistical estimator of the Jaccard coefficient of two
sets, which we discuss in the next paragraph. To estimate
J(S1, S2), we simply consider their sketches Sk(S1) and
Sk(S2) and let Cm = |{i : mini(S1) = mini(S2)}|. Then, a
simple probability argument allows to show that Cm/m is
an increasingly accurate estimate of J(S1, S2).

Compact representation of position sets: All mobile
users will use the same set H1(·), . . . , Hm(·) of minwise in-
dependent hash functions. These will be generated by the
central authority and then sent to each mobile user once,

1In our case, the position set Pi of a user i is a finite set of ge-
ographical positions (e.g., GPS coordinates). As such, it can
be put in correspondence with a subset of the integers using
standard techniques. E.g., [4] shows how to achieve this for
Web documents using Rabin’s fingerprinting method.

i.e., the first time she joins the application. Note also that,
in practice, the linear functions we use are represented in
terms of a small set of parameters. For example, if we use
100 hash functions, each mobile user will need to receive 202
integer values (the coefficients a and b of each hash func-
tion plus c and n), for a total of less than 1 KByte, if we
represent integers using 4 bytes. Then, mobile user i will
generate sketches of her position sets as follows: her sketch
Sk(Pi) is initially set to {0, . . . , 0}. Let {M1, . . . ,Mm} be
i’s sketch at some point. If she moves to a new position
p (e.g., identified by the GPS coordinates of a new base
station she connects to), then Sk(Pi) is updated as fol-
lows: Mj = min{Mj , hj(p)}, ∀j = 1, . . . ,m. This sketch
update corresponds to updating i’s position set as follows:
Pi = Pi ∪ {p}. This representation of position sets would
require an attacker willing to recover Pi knowing Sk(Pi) to
generate a sketch for all the possible Pi in the world U (even
with varying size) and estimate the Jaccard coefficient be-
tween them. The more is the size of U , the more an attack
is unfeasible.

4. PROBLEM STATEMENT
The problem of finding the minimum number of traces cover-
ing the area I of interest for a system user, can be formulated
as an instance of the NP − complete set cover problem. In
the classical set cover problem we are given a set I, taken
from a universe U , and a collection T = T1, T2, .., Tn of sub-
set of U . The pair (U, T ) is sometimes called a set system.
The aim is to compute a sub-collection T ′ ⊆ T which covers
I with minimum cost, namely using the smallest number of
sets in T .

In this section we first recall the Greedy Algorithm for set
cover and then, after providing a few useful remarks, we in-
troduce our algorithm that implements the greedy set cover
using sketches.

4.1 Greedy Algorithm for Set Cover with Uni-
tary Costs

This algorithm is given in figure 22.

Algorithm Standard-Greedy

Require: set system (T , U)
1: C = ∅ (C contains identifiers of sets in set

cover)

2: T̂ = T
3: Ŝ = arg maxS∈T̂ |S ∩ (U − C)|
4: while |S ∩ (U − C)| > 0 do

5: T̂ = T̂ − {Ŝ}
6: C = C ∪ Ŝ
7: Ŝ = arg maxS∈T̂ |S ∩ (U − C)|
8: end while
9: return C

Figure 2: Greedy Algorithm for Set Cover.

Since it seems hard to give the sketch of the difference of two

2In order to make the pseudo-code more readable, we
slightly abuse notation, since we regard C as both a set
of sets (the set cover) in line 9 and as the union of the sets
that form the cover in lines 3, 4, 6 and 7. Analogous con-
siderations hold for Algorithm 3.
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sets given the sketches of the two sets, we slightly modify the
algorithm above, by replacing |S∩(U−C)| with |(S∪C)∩U |
in steps 3, 4 and 7 of Algorithm 2. Maximizing the former
quantity is equivalent to maximizing the latter.The proof is
trivial, and is omitted due to space constraints.

4.2 Greedy Set Cover Algorithm using sketches.
We next describe the algorithm PP-Greedy. This algorithm
is an implementation of the standard Greedy Set Cover al-
gorithm for the case of unitary set costs. The novelty is that
it is “rephrased” in terms of operations on set sketches in-
stead of the sets themselves. Algorithm 3 is the sketch-based
counterpart of Algorithm 2.

Essentially, in lines 5 and 11, instead of considering the max-
imization of |(S∪C)∩U |, we choose the set S, such that the
(estimated) Jaccard coefficient between S∪C and U is max-
imized. This, up to approximations, is the set S such that
Sk(S ∪ C) and Sk(U) share the largest number of equal
minima, i.e., the set that maximizes Eq(U,C ∪ S), where
Eq(U,C ∪ S) =

∑m
i=1(mini(U) == mini(C ∪ S)), namely

the number of times the minima of U and C ∪ S agree.

Algorithm PP-Greedy

Require: Sketch Sk(Si), for i = 1, . . . , |T |, Sk(U)
1: E = 0
2: C = ∅ (C contains identifiers of sets in set

cover)

3: Sk(C) = {∞}i=1,...,m

4: T̂ = T
5: Ŝ = arg maxS∈T̂ Eq(U,C ∪ S)

6: Ê = Eq(U,C ∪ Ŝ)

7: while Ê > E do
8: E = Ê
9: T̂ = T̂ − {Ŝ}

10: C = C ∪ Ŝ
11: Ŝ = arg maxS∈T̂ Eq(U,C ∪ S)
12: end while
13: return C

Figure 3: Privacy Preserving Greedy Algorithm for
Set Cover.

5. PRELIMINARY RESULTS
In this section we discuss the results of a preliminary ex-
perimental activity performed to verify the performance of
PP-Greedy vs Greedy on synthetic traces.

Generating traces: Our experiments are based on mobil-
ity traces generated through the Global Mobility Simulation
Framework (GMSF) [1] developed at ETH Zurich. It allows
to generate mobility traces according to different models,
such as Random Waypoint, Manhattan, or GIS Based. In
our experiments, 10, 50 and 100 mobile users move in a
square U of side length d = 1000 units, according to the
Manhattan model; each user generates a trace made of a to-
tal of 35000 positions . We adopted the Manhattan model,
because it is the most suited to describe the mobility pat-
terns of users in a urban scenario. Moreover, in order to
make the simulation more realistic for an opportunistic sce-
nario, whenever a user stops in the simulated environment, it
generates a sketch of the set of positions Pi she went through

so far, and opportunistically sends it to the central authority.
In other words, each user sends to the central authority a set
of sketches Sk(Pi); each of them representing a subset of the
35000 positions sampled by the user.Sketches are generated
starting from the set of positions Pi applying the technique
described in section 3.2 with m = 100 hash functions; this
number of hash functions provides the best trade-off between
accuracy and size of the sketches [2]. The resulting sketch
is an array of 100 integers, with a total size of 400 bytes.

The area of interest I considered for the experiments are the
crossroads in the Manhattan topology, each one centered on
the diagonal of U (from the center to the top-left corner of
the square) made of 200 positions.

Metrics: The Greedy algorithm Gr receives in input the
area of interest I and the set of sets of positions sampled
by the users P = P1, .., Pn, and provides as output the set
PGr ⊆ P that approximate the set cover of I. The PP-
Greedy algorithm PP − Gr, instead of the set P , receives
in input SkP = (Sk(P1), .., Sk(Pn)), and provides as output
the set PPP−Gr ⊆ SkP that approximate the set cover of I.
We evaluate the performance of Gr and PP−Gr considering
three metrics. The cardinality of output i.e., the number of
position sets used to cover the area of interest, the coverage
of the output, intended as the fraction of positions in the
area of interest that are covered by the output.3. The error,
defined as the fraction of positions in the output which are
not in I. As an example consider the following sets I = 1, 3,
PGr = 1, 2, 3, 4. In this case the cardinality is 2, the coverage
is 100% and the error is 50%.

Results: As expected and as figure 4(a) shows, the cov-
erage achieved by both algorithms slightly increases with
the number of participating mobile users (i.e. number of
traces). The behaviors of both algorithms are similar, but
PP-Greedy always achieves 10% less coverage than Greedy;
this is the consequence of the loss of information due to the
use of sketches instead of the explicit position sets. More sur-
prisingly, the cardinality of PP-Greedy outputs is remark-
ably lower, approximately half the cardinality of Greedy (see
figure 4(b)). The higher cardinality of the Greedy solution
results in an increased error of Greedy, as can be observed
in figure 4(c). This is due to the fact that each new set
added to the solution contributes with a minimum number
of positions . Thus, increasing the cardinality of the solution
in general improves the coverage, but when the coverage is
already high, each new set added to the solution will have
an increasingly higher chance of contributing with new po-
sitions that do not belong to the area of interest, thus in-
creasing error. This explains why the PP-Greedy’s error is
always lower than 15%, while Greedy’s error is always higher
than 25%. There seems to exist a “breaking-point” for the
solution, beyond which the addition of more Pi’s to the so-
lution slightly increases coverage, but at the same time it
significantly increases error.

6. CONCLUSIONS AND FUTURE WORK
The lower accuracy of PP-Greedy is fairly compensated by
the lower error and cardinality of its outputs; as suggested

3We calculate the coverage of PPP−Gr considering the set
of corresponding positions
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(a) Coverage (b) Cardinality (c) Error

Figure 4: For every area of interest and for every performance metric, we averaged the results over 10 runs
of both algorithms.

by our results, there is an interesting trade-off between ac-
curacy on one-side and cardinality and error on the other.
This observation seems to support the conclusion that PP-
Greedy algorithm is a good privacy preserving approxima-
tion of Greedy but at the same time this preliminary results
deserve future investigations about the effects of tuning the
granularity of Pi’s with respect to the dimension of I that
would directly impact on coverage and error of both algo-
rithms, possibly reducing the actual performance differences.
Moreover, tuning the number m of hash functions could out-
line a better trade-off between the accuracy of sketches and
their size. Finally, we plan to extend our approach to differ-
ent application domains.
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