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We present BikeNet, a mobile sensing system for mapping the cyclist experience. Built leverag-

ing the MetroSense architecture to provide insight into the real-world challenges of people-centric

sensing, BikeNet uses a number of sensors embedded into a cyclist’s bicycle to gather quantita-

tive data about the cyclist’s rides. BikeNet uses a dual-mode operation for data collection, using

opportunistically encountered wireless access points in a delay-tolerant fashion by default, and

leveraging the cellular data channel of the cyclist’s mobile phone for real-time communication as

required. BikeNet also provides a Web-based portal for each cyclist to access various representa-

tions of her data, and to allow for the sharing of cycling-related data (for example, favorite cycling

routes) within cycling interest groups, and data of more general interest (for example, pollution

data) with the broader community. We present: a description and prototype implementation of the
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system architecture based on customized Moteiv Tmote Invent motes and sensor-enabled Nokia

N80 mobile phones; an evaluation of sensing and inference that quantifies cyclist performance

and the cyclist environment; a report on networking performance in an environment character-

ized by bicycle mobility and human unpredictability; and a description of BikeNet system user

interfaces.
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chitecture and Design—Wireless communications; J.3 [Computer Applications]: Life and Medical

Sciences—Health
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1. INTRODUCTION

As evidenced by the wealth of bicycle-related sensors available at stores rang-
ing from WalMart to specialty bike shops, there is substantial interest in the
mainstream recreational cycling community in collecting data quantifying var-
ious aspects of the cycling experience. This mirrors a broader societal inter-
est in diet [Reddy et al. 2007], health [Wood et al. 2008], and fitness metrics
[Nike+iPod Sports Kit 2007]. Existing commercial bike-sensing systems tar-
geting this demographic measure and display simple data such as wheel speed,
and provide simple inferences such as distance traveled and calories burned.
These systems have become increasingly more sophisticated and miniaturized.
This trend is continuing and bicycles in the future will be sold with embedded
fitness/performance-related sensing systems. However, a cyclist does not exer-
cise in isolation and by ignoring important context items the data collected by
current systems fails to capture a comprehensive picture of the cyclist experi-
ence. For example, limited by the imperfect human senses and often focused on
the activity of cycling itself, without BikeNet the cyclist gains little empirical
knowledge of important factors such as exposure to air and noise pollution, and
danger due to car density.

Among recreational cyclists there is a spread in the level of interest about
various characteristics of a ride. Some are competitive with their friends for the
sake of bragging rights, and may want to initiate challenges to set up virtual
competitions among geographically separated cyclists; some focus on health-
related aspects such as personal fitness; many view bicycling as a time to relax
while getting some moderate exercise and are most interested in finding routes
that are safe and quiet; others want to simply archive statistics about their
rides for later analysis [Beating Heart Blog 2007].

In this article, we design and implement the prototype of a system not only
to give context to the cyclist performance as part of a user-targeted applica-
tion (e.g., health and safety), but also to collect environmental data as part of
communal projects (e.g., pollution monitoring/mapping). We quantify aspects of
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cycling performance and environmental conditions that the mainstream recre-
ational cyclist can appreciate and afford, akin to the Nike+iPod kit, a system
[Nike+iPod Sports Kit 2007] for recreational runners that logs exercise history.
Also, BikeNet facilitates the social sharing of cycling-related data (e.g., safer
and quieter routes, or exciting and challenging routes) among cyclists seeking
similar cycling experiences.

BikeNet contributes the first working mobile networked sensing system for
bicyclists. Characteristics of our system include:

—Cyclist Performance/Fitness Measurement. Like off-the-shelf solutions,
BikeNet collects and stores data about the following baseline cycling per-
formance metrics: current speed, average speed, distance traveled, calories
burned. In addition, we collect and store the following advanced metrics: path
incline, heart rate, galvanic skin response (a simple indicator of emotional
excitement or stress level). All data sensed by the system is at least stamped
with time and location metadata.

—Environment/Experience Mapping. The system provides quantitative guid-
ance to cyclists about the healthiness of a given route in terms of pollution
levels, allergen levels, noise levels, and roughness of the terrain. These mea-
surements, together with data from cyclist performance measurements, are
correlated to create a holistic picture of the cycling experience.

—Long-Term Performance Trend Analysis. Collected data persists beyond the
ride on which it is collected. The system enables the upload of data traces
into a personal repository allowing the cyclist to monitor her performance im-
provement or her exposure to health risks like automobile exhaust. This data
that can be selectively shared with other individuals (e.g., cycling friends,
physicians), or exported into a public database.

—Data Collection and Local Presentation. BikeNet allows the cyclist to cus-
tomize, via a profile of preferences, what data is collected by the system,
when it is collected, where it is collected, and under what correlated condi-
tions sensor data capture occurs (e.g., increase the sampling rate of the heart
rate when the path incline is above a threshold). The profile also indicates
how data is to be presented, both locally (e.g., on a handle bar-mounted cell
phone LCD) on the bicycle when en route and through access and presenta-
tion methods once the data has been delivered to the backend repository.

—Data Query and Remote Presentation. The system provides a Web-based por-
tal [BikeView - the BikeNet Web Portal 2007] on the backend as a means
to inject real-time queries into the system to request particular bicycling-
related data of interest to the backend system user. Also, the portal can be
used as a place to publish/share data with friends/competitors in the same
interest group (similar to the Nike+iPod group challenge feature [Nike+iPod
Sports Kit 2007]) about themselves and the paths they traverse for real-time
or delayed display. In so doing, we provide a useful tool to network members
of the cycling community through data of mutual interest.

—Disconnected Operation. BikeNet utilizes an opportunistic networking
paradigm, whereby mobile sensing platforms are tasked and data is muled
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or uploaded according to the opportunities that arise as a result of the un-
controlled mobility of the cyclists. The BikeNet system operates in a delay-
tolerant sensing mode by default, where cyclists go on trips, collect sensed
data, and upload their data when they return to home, possibly using the
assistance of data mules as discussed in Section 2.2.3. This default mode is
akin to the Nike+iPod [Nike+iPod Sports Kit 2007] sensing system for run-
ners. In this case, our BikeNet implementation uses a purely delay-tolerant
mote-based solution. However, if the cyclist carries a cell phone, such as
the Nokia N80 in our implementation, BikeNet automatically integrates
the cell phone into the system as a mobile sensor gateway and offers real-
time interaction between the backend and the cyclist in support of real-time
sensing.

Our BikeNet implementation uses sensors embedded or interfaced with the
Moteiv Tmote Invent [Moteiv Tmote Invent 2007] platform as well as camera
and microphone sensors available on the Nokia N80 [Nokia N80 Mobile De-
vice 2007] platform. All Tmote Invent and N80 platforms are networked over a
common IEEE 802.15.4 short-range radio channel. The N80 additionally pos-
sesses IEEE 802.11g, Bluetooth and GSM cellular radio interfaces. With these
additional radios the N80 can act as a mobile sensor gateway to support both
real-time data uploading to the backend and real-time queries from the back-
end, over the wide area cellular network while the cyclist is en route.

In the following sections, we describe our experiences deploying a sensing
system for cyclist experience mapping, leveraging opportunistic sensor net-
working principles and techniques [Campbell et al. 2006]. We discuss the sys-
tem architecture, design, and implementation in Section 2. Section 3 describes
our cyclist experience mapping application, including sensing accuracy and
inference techniques, communication protocol performance, and feasibility re-
sults. Related work is discussed in Section 4 before concluding with a summary
and a discussion of possible extensions in Section 5. The article presents an ex-
tended version of work [Eisenman et al. 2007] first presented at ACM SenSys
2007.

2. SYSTEM ARCHITECTURE AND DESIGN

BikeNet is a network characterized by mobile sensing and sparse radio network
connectivity. Given these characteristics, and the application requirements for
the system, we design the BikeNet system as an instantiation of the MetroSense
architecture [Campbell et al. 2006]. The architecture offers a people-centric
paradigm for large-scale sensing at the edge of the Internet using an oppor-
tunistic sensor networking approach. This approach leverages mobility-enabled
interactions and provides coordination between people-centric mobile sensors
and static sensors, as in the CitySense project [CitySense 2007], and includes
edge wireless access nodes (i.e., SAPs) in support of sensing, tasking, and data
collection. Figure 1 shows a pictorial overview of the BikeNet system. Details of
a prototype implementation are included to make the architecture and design
descriptions more concrete.
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Fig. 1. BikeNet system overview. Sensors collect cyclist and environmental data along the route.

Application tasking and sensed data uploading occurs when the sensors come within radio range

of a static Sensor Access Point (SAP) or via a mobile SAP along the route. Sensed data muling can

occur when cyclists come within mutual radio range. We collect data about the cyclist (heart rate,

galvanic skin response), about the cyclist’s performance (wheel speed, pedaling cadence, frame tilt,

frame lateral tilt, magnetic heading), and about the cyclist’s surroundings (sound level, carbon

dioxide level, cars).

2.1 Hardware

The BikeNet system hardware is organized into three tiers, the backend server
tier, the Sensor Access Point (SAP) tier, and the mobile sensor tier. In the fol-
lowing, we discuss the design and implementation of each tier, along with in-
formation on ruggedizing and calibration of the hardware.

2.1.1 Mobile Sensor Tier. The mobile sensor tier incorporates a number
of bicycle-mounted and human-mounted Moteiv Tmote Invent [Moteiv Tmote
Invent 2007] mobile sensing platforms. Together these sensors gather data con-
cerning cycling performance, cyclist health and fitness, and the environment
surrounding the cyclists’ routes. The Tmote Invents mounted to a particular
bicycle, along with those mounted to the human riding the particular bicy-
cle, constitute a BAN. Intra-BAN communication occurs via short-range IEEE
802.15.4 radio. The BAN architecture is designed in a modular way such that
sensing components can be added or subtracted simply according to user prefer-
ences (dynamically) set in software. Figure 2 shows a logical representation of
the Bicycle Area Network (BAN), and Figure 3 shows a prototype sensor-enabled
bicycle.

We use the native sensors provided by the Tmote Invent: a two axis ac-
celerometer, a thermistor, a photodiode, and a microphone. The Nokia N80 of-
fers a camera, microphone, and multiple radios than can be used as sensors. In
follow-on work [Miluzzo et al. 2008a], we have focused on the mobile phone as
the primary sensor and interface allowing for user annotation and interaction
with her data. In our current BikeNet prototype, we also interface a number
of additional sensors to the Invent. We process the accelerometer data to mea-
sure the angle of incline, and lateral tilt of the bicycle. To measure the angular
velocity of the wheel and pedal, forward speed, and distance traveled, we at-
tach a magnet-triggered reed relay mounted across the Invent’s user button.
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Fig. 2. Logical representation of bicycle area networking. Sensors share a common IEEE 802.15.4

channel. A mobile phone plays a dual architectural role depending on whether its cellular radio

is active/connected. If connected to the cellular backend the mobile phone acts as a Mobile Sensor

Access Point (SAP) facilitating real-time sensing; else it acts as a local member of a BAN engaged

in delay-tolerant sensing.

Fig. 3. Physical implementation of the BikeNet system. Numbered sensors installed on the bicycle

map to the sensor types labeled in the logical BAN representation in Figure 2.

Every time the relay closes (every pedal/wheel rotation) a TinyOS [TinyOS
2007] interrupt event is generated. To measure direction and deviation with
respect to the Earth’s magnetic field, we add a dual axis magneto-inductive
sensor (Honeywell HMC1052L) by connecting the sensor output to two ADC
channels on the Invent and connecting a free I/O pin from the Invent’s MSP430
microcontroller configured as output to act as a digital control line. We fur-
ther process the magnetometer data for use as a metal detector, and in par-
ticular for automobile detection. To provide a common notion of absolute time
and location within a BAN, we connect a Garmin Etrex 12 channel GPS unit
(Figure4(b)) via the UART0 port of the Tmote Invent’s MSP430. The Garmin
Etrex provides time and location data at the fixed rate of once per two seconds
via its RS232 interface. To measure the carbon dioxide levels in the environment
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Fig. 4.

surrounding the cyclist, we interface the standard Tmote Invent with the
Telaire 7001 CO2/Temperature Monitor, via an ADC port of the Tmote In-
vent’s MSP430. To measure the galvanic skin response of the cyclist, we use an
ArcherKit Biofeedback Monitor connected to a Tmote Invent. Wires connected
to the fingers of the cyclist measure epidermal microcurrents.
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The Tmote Invents, Nokia N80 mobile phones, and external sensors are pow-
ered using rechargeable batteries in our prototype. A commercial implementa-
tion could leverage ongoing work in energy harvesting (particularly from ped-
aling and frame vibration) to reduce the need for external recharging. This is
outside the scope of the current work.

2.1.2 SAP Tier. The SAP tier offers high performance, high reliability, and
secure gateway access from the sensor tier to the backend servers. This access
allows sensed data to flow to the system repositories, and provides a point of
command for the architecture to task available sensors with user application re-
quests/queries. When possible, these gateways are symbiotically implemented
on the back of existing network infrastructure by plugging a short-range ra-
dio module into the existing network element (e.g., IEEE 802.11 access point),
allowing it to communicate with the sensor tier. SAPs can be static and wired
directly to the Internet, or can be mobile and use a data service over a wide
area radio access network to provide connectivity to the backend (e.g., mobile
phone with GSM/GPRS). We study both tasking and uploading via both static
and mobile SAPs in our implementation. SAPs are also equipped with sensors
to provide context and validation for uploaded data.

The static SAP is implemented using an unmodified Tmote Invent plugged
into the USB port of an Aruba AP-70 IEEE 802.11a/b/g access point. The Aruba
is running a customized version of OpenWRT, an embedded Linux variant.
The BikeNet SAP is implemented as an overlay of tools requiring only user
privileges. Certain kernel module support is needed; modules are loaded at
runtime if necessary. The tools distribution is cleanly encapsulated in a single
tarball making symbiotic deployment of a BikeNet SAP on to a standard WiFi
access point easy to manage. The mobile SAP is implemented using a Nokia N80
paired to a custombuilt Bluetooth/802.15.4 gateway via its Bluetooth radio. The
N80 SymbianOS uses a serial device emulation of the Bluetooth SPP profile to
read and write from the Bluetooth/802.15.4 gateway. The backend interface of
the SAP uses GSM/GPRS to the BikeNet repository and backend services. This
is done with a combination of SMS messages from the backend pushed to the
phone, and TCP connections initiated by the N80 to transmit responses to a
backend server that translates data uploads to SQL commands to insert data
into the repository.

The use of a personal device like a cell phone as a mobile SAP gives rise to an
interesting dual role for the N80 in our system. Architecturally, there is a clean
separation between SAP and sensor tiers, but in the case of a mobile phone
owned by the cyclist the BAN to which the cyclist belongs may have continuous
access to the SAP services and resources whenever GPRS service is available.
A mobile phone thus plays a dual architectural role depending on whether
its cellular radio is active/connected. If connected to the cellular backend the
mobile phone acts as a mobile SAP facilitating real-time sensing and access to
backend services such as the checkpoint service discussed in Section 2.2.6; else,
it acts as a local member of a BAN engaged in delay-tolerant sensing. GPRS
pricing and performance also comes into play when using the cell phone as a
mobile SAP.
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2.1.3 Server Tier. Members of the backend are Ethernet-connected servers
equipped with practically unbounded storage and computational power. These
provide a number of services to the architecture, some of which are described in
Section 2.2. In particular, it is to the backend servers that system users connect
to submit application requests/queries for execution in the sensor tier, and to
retrieve and visualize sensed data.

2.1.4 Ruggedizing the Hardware. Because of the outdoor nature of the
BikeNet testbed we take steps to protect the Tmote Invents from the weather
(e.g., rain, snow) by enclosing each in an OtterBox 1600 Case. The OtterBox
comes with adhesive foam that is customizable to a degree that allows us to
secure the Tmote Invents inside the cases without any slipping. A number of
sensors require running wires from the Tmote Invent out of the OtterBox to
other places on bicycle or cyclist (e.g., the WheelSensor’s reed relay is wired to
the front fork of the bicycle). For these we drill holes through the OtterBox 1600
and fill the holes with silicone gel after passing through the wires to maintain
waterproofing. We cut the wires inside the box and crimp/solder on connectors
(see Figure 4(d)) to allow a quick disconnect of the Tmote Invents for recharg-
ing. Additionally, the Otterbox cases are securely fastened to the bicycle frame,
using a system of steel mounting bars and steel hose clamps, since bicycling
implies often severe vibration and jolting. The OtterBoxes are screwed to these
mounting bars and the screw holes are sealed with silicone gel. In determining
the geometry and placement of the mounting bars we have attempted to mini-
mize vibration and unwanted degrees of freedom for the sensors (a picture of a
sensor-enabled bicycle appears in Figure 3).

2.1.5 Calibration/Validation. Despite efforts to mount the accelerometers
at perfect right angles (in two dimensions) with the ground, we find that calibra-
tion is required for each bicycle in order to correctly understand the measured
values. Even if the error angle of the mounting bracket is small it can lead
to a large skew in the calculated slope, because of the nonlinear nature of the
inverse tangent function used to calculate the slope. Stationary calibration is
done in the lab by matching the bicycle-mounted accelerometer outputs against
a set of known inclines to derive a calibration curve for each device. To validate
this static calibration in the field, we manual measure a 0.75km section of
the road containing slopes from 0 to 7 degrees using a laser level (model TUV
EPT-97A, 650nm) at 30m intervals. We receive excellent correlation between
manual measurements and those made using the accelerometer (the TiltSensor
role).

We find that calibration is also necessary for the magneto-inductive sensors
due to the steel frame of the bicycle, and the steel mounting bars. This is done
by executing a hard/soft iron calibration [Caruso 2000] for each bicycle, and
adding the correction for the magnetic declination of Hanover, NH, USA.

We infer cyclist fitness level using a combination of the lateral tilt, slope, and
pedal speed to wheel speed ratio. To check our inference technique against a
more direct physiological measure of cyclist fitness, we use the Garmin Forerun-
ner 301 Heart Rate Monitor/GPS. A positive correlation between our inferred
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Fig. 5.

cyclist fitness level and that indicated by the actual cyclist heart rate validates
our technique.

To provide richer context for the sensor measurements and inference we do in
BikeNet, we attach four Nokia N80 phones on a bicycle helmet, that is, facing
front, back, left, and right (see Figure 4(e)). Using continuous video capture
(both visual and audio) throughout the ride we are able to validate that events
sensed/inferred by BAN sensors are at least reasonable/probable and depending
on the measurement type we can definitively validate the data (e.g., car passing
the bike or not).

To validate detection-based inferences, we use a standard Tmote Invent pro-
grammed to write the (time, location) 2-tuple to the Flash every time the user
button on the Tmote Invent is clicked. We term this the ButtonMote for ease of
reference. For example, in testing the MetalDetector (Section 3.1.1) we manu-
ally click the ButtonMote user button every time we pass a parked or moving
automobile or an automobile passes us, and compare the time/location-aligned
MetalDetector trace with the ButtonMote trace to determine detection accuracy.

2.2 Software

Figures 5(a), 5(b), and 5(c) show how the BikeNet software system maps to the
three tier hardware architecture, respectively defining the mobile sensor, SAP,
and back-end software subarchitectures. In our implementation, communica-
tion between the SAP and back end subarchitectures is via either a TCP/IP
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Fig. 6. Mapping between BAN hardware and logical roles.

stack (for static SAPs) or a GPRS/GSM stack (for mobile SAPs). Primary soft-
ware elements are discussed in the following.

2.2.1 BikeNet Role Assignment. For purposes of modularity the functional
requirements within a BAN are divided into logical roles. The PedalSensor and
WheelSensor roles measure the angular velocity of the pedal and front wheel,
respectively. From these the current and average speed, distance traveled, ped-
aling cadence and gear ratio are measured or inferred. The TiltSensor role
measures the angle of incline of the bicycle frame with respect to the gravi-
tational force vector, allowing for real-time slope calculation and a mapping
of the terrain along a cyclist’s route. The LateralTiltSensor role measures the
lateral angle of incline of the bicycle frame. The CompassSensor role measures
the instantaneous angle of the bike frame with respect to the Earth’s mag-
netic field, allowing for a form of dead reckoning when used in combination
with speed and distance information obtained from the WheelSensor role. The
MetalDetector role measures distortions in the the Earth’s magnetic field caused
by nearby ferromagnetic metals, allowing inference of the amount of passing
automobile traffic. The SyncSprinkler role provides a common absolute notion
of time and location to all members of the bike area network via periodic short-
range broadcasts. The LocalDisplay role provides a means to locally display
sensed data. The CO2Sensor role measures the carbon dioxide content in the
atmosphere surrounding the bicycle, allowing the system to infer whether the
cyclist is passing through an urban area (more CO2 from auto exhaust) or a
rural area (less CO2 due to plant respiration). The SoundSensor role measures
the volume of noise in the environment surrounding the cyclist, and is used
for voice-triggered sensing and audio annotation of a cyclist’s ride. The Cam-
eraSensor role provides triggered capture of an image, or a video clip of specified
duration. The PersonalNode role provides control via short-range radio over the
other sensing roles, including executing user preferences within the BAN (e.g.,
required sensors, sampling parametrization), and signaling the start and stop
of a cycling trip. Each cyclist necessarily possesses a PersonalNode, but all other
roles are optional, depending on the sensing preferences of the cyclist. Figure 6
shows the mapping between BikeNet roles and the sensing hardware, where
each row represents a different (set of) devices on a fully equipped prototype
bicycle.
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We assume that each cyclist possesses a mobile personal computing device
(e.g., Tmote Invent, Nokia N80, radio-equipped Apple iPod) at all times that
can be tasked by the SAP to take on the PersonalNode role. In our prototype
system, each cyclist carries a Tmote Invent preconfigured with the PersonalN-
ode role. The PersonalNode role includes a list of user preferences that dic-
tate what additional sensing roles are desired to quantify the cyclist fitness/
performance/environment. These sensing roles are split into two lists, required
and preferred, that are included into a hello beacon periodically broadcast by
the PersonalNode. The hello beacon also includes the required sensing param-
eterization (e.g., sample rate). Each available mobile sensing platform (i.e.,
Tmote Invent) that receives the beacon replies with a hello reply if its sensing
capabilities match either a required or preferred role requested in the hello
beacon. The hello reply indicates which role(s) the respondent is offering to fill.
However, a recipient of the hello that is already associated with another Per-
sonalNode will not reply. Upon receiving a hello reply, the PersonalNode first
registers the respondent and the role(s) it is offering to fill, and then sends a
hello reply ack to complete the association. The hello reply ack contains a list of
identifiers reflecting the current BAN membership. Subsequent hello beacons
sent by the PersonalNode do not request sensing roles that are already being
filled by associated mobile sensing platforms. If a hello reply ack is not received
in response to a hello reply, the reply is retransmitted up to N times. If after
N times the ack is not received, then it is assumed that mobility has carried
the PersonalNode and potential sensor out of range and the partial association
state is purged.

Though generally a mobile sensing platform may, depending on sensing ca-
pabilities, be able to take on more than one BikeNet role, for our current pro-
totype implementation we allow only one role per sensing platform to work
within hardware limitations of the Tmote Invent. For example, there are a
limited number of free configurable I/O pins and ADC channels available for
external sensors on the Tmote Invent, and a shortage of Flash/RAM. In the
future with more capable hardware, we will be able to condense our current
implementation, assigning multiple roles to a single sensing platform and
greatly reducing BAN complexity and costs (i.e., monetary, radio congestion,
energy consumption). In the rest of the article, unless stated we treat the logi-
cal sensing role and the mobile sensing platform to which the role is assigned as
synonymous.

2.2.2 Intra-BAN and Inter-BAN Management.

Localization and synchronization. The SyncSprinkler role provides, via a
periodic broadcast within the BAN, periodic samples of the instantaneous ab-
solute time and location. In our implementation these are obtained from a GPS
unit. The SyncSprinkler controls its transmission power to limit the scope of its
beacons, thereby maintaining a higher location accuracy for all broadcast recip-
ients. All BAN members’ time estimate is updated externally with the values
contained in the SyncSprinkler broadcasts, and internally via a local clock set
to provide higher time resolution between received SyncSprinkler broadcasts.
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Sensing control. When the PersonalNode has established associations with
sensing platforms (i.e., Tmote Invents) sufficient to meet all the roles specified
by the user preferences, an LED on the PersonalNode indicates a “Ready” state.
A button click on the PersonalNode when in this “Ready” state sends a start
message broadcast from the PersonalNode indicating that the ride is beginning
and sensors should start collecting data with their prescribed parametrization.
This message is acted on by mobile sensing platforms that are associated with
that PersonalNode, moving both the PersonalNode and the associated mobile
sensors into the “Started” state. If associated sensors do not receive a start mes-
sage within a timeout period, the association times out and the mobile sensors
are free to associate with another PersonalNode at that time. A subsequent Per-
sonalNode button click while the PersonalNode is in the “Started” state sends a
stop message broadcast, signaling the end of the ride. The stop message causes
mobile sensors associated with that PersonalNode and in the “Started” state to
cease sensing.

Event-triggered sensing vs. continuous sensing. Sensing is set up to occur
either continuously or only when triggered by other events. In the continuous
case, the user preferences executed by the PersonalNode parametrize the sens-
ing capture (e.g., sampling rate, duration, local processing functions) that takes
effect immediately upon receiving the start message of the sensing control pro-
tocol. Continuous sensing in BikeNet is appropriate for roles such as the Tilt-
Sensor where terrain mapping should be continuous. On the other hand, some
sensing operations may be too energy expensive for a mobile sensing platform
to do continuously, or may not have meaning except under certain contexts (e.g.,
certain locations of interest, or under certain sensed circumstances). Triggers
are defined by dynamically updatable user profiles executed by the PersonalN-
ode that specify the conditions under which sensing should occur.

The BikeNet implementation support of triggered sensing includes methods
to define and submit sensing triggers and actions to the PersonalNode for ex-
ecution within the BAN. Upon receiving the triggered sensing definition, the
PersonalNode breaks apart the conditions that must be met for the action to
take place, and reliably transmits each condition (e.g., “slope > 5 degrees”) to
the BAN member suited to evaluate the condition (e.g., the TiltSensor). When
a condition evaluates to true, the BAN member signals the PersonalNode. The
PersonalNode initiates the action when all conditions for a given triggered ac-
tion are met. We are currently focusing on triggered photography, video, and
audio capture using the camera and microphone on the N80, when certain con-
ditions in the BAN are met, but we also implement support for a number of
other actions such as sending data to be displayed on the LocalDisplay, sensing
something at a different parametrization than the current one, playing a sound
on the N80 or Tmote Invent speaker, transferring sensed data from one Tmote
Invent to another, and blinking LEDs.

Real-time feedback/display. The local display protocol is used by the LocalD-
isplay to query other BAN members for values to display. The LocalDisplay is
provided by a handlebar-mounted N80 mobile phone, via the Bluetooth/802.15.4
gateway shown in Figure 4(f). The Tmote Invent’s hardware design shares the
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SPI bus between radio and flash, and the same physical microcontroller pins
are used for UART0. Since the Bluetooth-to-Serial converter is connected to
the Tmote Invent UART0 port, this precludes simultaneous radio communica-
tion and display updating. Hence, BikeNet uses a simple TDMA-like time slot
assignment on top of the TinyOS CSMA MAC to improve communication be-
tween the roles generating sensor data and the LocalDisplay. The LocalDisplay
periodically broadcasts a query for data and the sensor roles register the first
LocalDisplay they hear a query from as the only LocalDisplay they will reply to
thereafter. This association times out after a period if no queries are heard from
the LocalDisplay. The data that a given sensor role returns to the LocalDisplay
is a matter of user policy, but a typical display includes speed, distance trav-
eled, bike frame tilt angle, pedal RPMs, and time of day. To support flexibility
in the user configuration of the display, data is represented in the packet with
(type,length,value) format.

2.2.3 Data Exchange Services. Three types of data exchange occur in the
BikeNet system: tasking exchange, uploading exchange, and muling exchange.
The tasking and uploading data exchanges take place between mobile sensing
platforms and SAPs. The muling data exchange takes place only between mem-
bers of the mobile sensing tier (e.g., Tmote Invents). As default, BikeNet uses a
delay-tolerant mode where a BAN’s PersonalNode mules data for sensing roles
in its BAN (up to the limits of its available storage) and uploads the data via
wire or a wireless upload protocol. Inter-BAN muling and in situ uploading
via either mobile SAPs or opportunistically encountered static SAPs support
queries from backend user applications that may want data in a more timely
manner.

In the BikeNet tasking exchange, a SAP interacts with available mobile
sensing platforms (e.g., Tmote Invents) to first instantiate a PersonalNode pro-
grammed with a cyclist’s BAN preference profile. Based on this profile, the
PersonalNode assembles a BAN by tasking other available mobile sensing plat-
forms with the required sensing roles as discussed in Section 2.2.1. Aside from
this BAN bootstrapping, the tasking exchange also includes the handling of user
queries/requests for data by backend system users, received via the SAP. The
PersonalNode responds to these queries by invoking the necessary continuous
or triggered sensing (Section 2.2.2) within its BAN.

In the muling exchange, sensed data is transferred between mobile sensors
outside of the radio range of either a mobile or static SAP. A simple muling
protocol is implemented on every Tmote Invent, but the option to activate mul-
ing (i.e., spend Flash space to carry others’ data) is set by cyclist preference.
The protocol uses an advertisement-accept-data exchange, where the advertise-
ment specifies the amount of data the provider wants to have muled, the accept
message indicates the amount of data the consumer is willing to mule (based
on Flash constraints), and the data message represents a burst of data packets
from the producer to the consumer. In addition, Stop-and-Wait ARQ with a max-
imum of three retransmissions provides for reliable transfer of the data packet
burst. If a producer still receives no acknowledgment after three retransmis-
sions of the same packet it will assume the session is over and begins advertising
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anew. Our implementation includes support for replication of sensed data (i.e.,
via the muling exchange) but the replication of muled data is not allowed. Re-
stricting the right to replicate to the data origin allows it to maintain control
over the number of copies of its data that are circulating and also to vet (in
terms of trustworthiness) all candidate mules.

In the uploading exchange, when a BAN comes within the radio range of a
mobile or static SAP, the Tmote Invents composing the BAN attempt to upload
sensed data to the backend data repository. The upload protocol message ex-
change is identical to that of the muling protocol. When a SAP receives data
packets, they are forwarded (in both the mobile SAP and static SAP cases) to
the backend repository. The decision to accept new upload sessions is made
based on channel congestion around the SAP.

2.2.4 Ground-Truth Sensing. In the BikeNet sensing system, SAPs are
equipped with certain sensors and can provide ground-truth measurements.
Ground-truth1 sensing refers to a trusted, high fidelity, always accessible
stream of data. One use of ground-truth data is as a filter applied to data
uploaded from a sensor before the data is passed by the SAP to the backend
repository. The ground-truth filter can be applied to validate or invalidate up-
loaded data when the uploaded data samples and ground-truth data samples
have a high expected correlation (e.g., temperature sampled at the same loca-
tion and at the same time, samples triggered by the same set of circumstances).
Further, ground-truth sensing can be used to satisfy queries coming from a back
end system user that have only coarse location context requirements. Ground-
truth data is also used to satisfy queries coming from a BAN in the radio range
of a SAP. In this case the BAN can ask for readings from the SAP’s ground-truth
sensors, for example, as part of a self-calibration routine.

2.2.5 Query Management. The query management component on the SAP
handles queries both from the backend system user, and from the PersonalNode
of a BAN. It invokes a sensing resource discovery routine to determine what
sensing resources are available to meet the sensing request. The routine checks
both any ground-truth sensors on the SAP itself (Section 2.2.4) and available
sensing resources on any BANs that may be within radio range of the SAP. Once
a list of available sensing resources is compiled, the SAP invokes a sensing re-
source selection routine to decide which resources will be tasked in order to sat-
isfy the request, and invokes a tasking routine to execute the necessary request
(i.e., a simple function call if the resource is on-SAP, or via the tasking exchange
(Section 2.2.3) if the resource is in a BAN in radio range. In the BikeNet imple-
mentation, we have experimented with handling queries to the SAP, originating
both from the backend and from a BAN in radio range, for ground-truth data.
In particular, using a cellular phone as a mobile SAP, we have experimented
both with event-triggered capture of images, sound and videos requested by the
BAN (e.g., an audio annotated ride); and with direct requests from the backend
BikeNet Web portal for image, sound, and video samples.

1While related in principle, this notion of ground-truth sensing should not be confused with sensing

for experimental validation and debug (e.g., using the quad capture video helmet in Figure 4(e)).
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2.2.6 Route Checkpoints. Route checkpoints are virtual location-specific
storage entities designed to allow cyclists to store and retrieve location-specific
data. A checkpoint is meant to maintain performance-related characteristics
about the rides of individual cyclists in a particular location (e.g., average speed
up a particular hill). Conceptually, each time a cyclist approaches a checkpoint
(as determined by the BAN’s GPS receiver) her previous statistics for that
checkpoint are automatically downloaded via the cellular data connection from
the checkpoint server on the backend, notifying the cyclist of past performance
via the LocalDisplay, perhaps motivating the cyclist to improve. Additionally,
average performance characteristics across multiple cyclists may be available
for display (according to policy), enabling a form of competitive challenge be-
tween cyclists that ride along the same route even if they are not cycling to-
gether. The current characteristics are automatically uploaded to update the
checkpoint record (see the following) when she completes the checkpoint. Check-
point updates may be done in real time via the cellular data channel of the
PersonalNode, or opportunistically during a SAP rendezvous (e.g., when the
cyclist returns from her route).

Checkpoints may be created by the cyclist through a user interface on the Lo-
calDisplay by indicating the start and end of the checkpoint via button presses.
Alternatively, checkpoints may be created via a Web interface before the ride by
defining the GPS coordinates defining the checkpoints start and stop locations.
Either way, the checkpoint is registered in the checkpoint server as a record
containing the creator’s user ID, the start location, stop location, and a privacy
policy indicator of whether the checkpoint is private (only those approved by
the creator can interact with the checkpoint) or public (all cyclists may inter-
act with the checkpoint). Performance characteristics, including average slope
angle, average speed, average gear ratio, and distance, for the checkpoint are
appended to this record on a per-user basis (pursuant to the privacy policy) and
are recalculated with every upload.

In practice, a list of checkpoints may be preloaded onto a cyclist’s PersonalN-
ode (e.g., cell phone) prior to the ride. Alternatively, partial lists of checkpoints
can be swapped in and out along the route, that is, load a list of upcoming check-
points and unload checkpoints the cyclist has bypassed. Whether preloaded or
dynamically fetched, interaction with a particular checkpoint is governed by
the privacy policy set when the checkpoint is created.

2.2.7 Query Submission Portal. The BikeNet backend includes a Web por-
tal (BikeView [BikeView - the BikeNet Web Portal 2007]) containing a graphical
presentation of a cyclist’s data, but also allowing for the real-time querying of
BANs using a GPRS connection via the N80, if the cyclist is using such a device
for her PersonalNode. The user can select the BAN of interest and assemble a
query to submit to the query manager component of that SAP using a collection
of pull down menus. A final mouse click transmits the query over the cellular
network to the selected mobile SAP. We implement the ability to query a BAN’s
location, capture a camera image, and sample the microphone via this portal
interface by sending SMS over GPRS to the N80.
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Fig. 7. BikeView portal for data display and query submission. A CO2 map of Hanover, NH, USA

streets on a summer weekday afternoon is shown.

2.2.8 Sensor Data Storage, Processing and Visualization. The sensor data
repository provides a location for the long-term storage of cyclist experience
data on a per-cyclist basis and also provides a convenient location for the ag-
gregation of all long-term trace data for all participating cyclists. Access to
particular data is a matter of the policy that each cyclist registers with the
repository (or a separate access control entity). The sensor data mining compo-
nent provides a set of standard statistical functions and reusable calculations/
data transformations that a user (e.g., cyclist) can invoke to control the retrieval
and presentation of data. For BikeNet we use a number of data interpretation
and inference tools and techniques, including scatter plots to look for data corre-
lation, fast Fourier transforms (FFTs) to look for periodicity, running averages
to smooth data to look for trends, and interpolation to align samples according
to distance. For example, based on noise observed in the raw data from the Tilt-
Sensor (see FFT of tilt data converted to WAV format and analyzed in Audacity,
Figure 9), we apply a smoothing method to filter spurious vibration from the
data before calculating the slope of the cyclist’s path. Currently, the data han-
dling is done in a nonautomated way by storing raw data streams in flat text log
files, processing these files using Awk scripts to extract data of different types
and apply methods for smoothing, averaging, and scaling. Further, we develop
scripts to transform data values into BikeView [BikeView - the BikeNet Web
Portal 2007] visualizations. With BikeView (see Figure 7), we present summa-
rized collected data sorted by user, and sorted by ride within each user account
(akin to the presentation of “My Runs” on the Nike+iPod Web page [Nike+iPod
Sports Kit 2007]). Detailed sensed data can be obtained by simple mouse hov-
ers and clicks over the graphic representations of different rides. The vision is
to provide backend sharing between users facilitated by dynamic creation of
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group pages that are visible to all users in the group and to which all group
members can publish data.

2.2.9 System State Database. The system state database contains both
static state information (e.g., Tmote Invent physical address and sensing capa-
bilities, PersonalNode human custodian information) and dynamic state infor-
mation (e.g., last known position of a mobile SAPs, and BANs, SAP load aver-
age) about elements in the network. In particular, the system state database
tracks which BANs are currently in radio range of mobile and static SAPs.
This facilitates proper query routing from the back end query submission por-
tal to particular BANs, for BAN-specific user queries. The information is also
valuable more generally for debugging and management of the network.

2.3 Incentivizing BikeNet

People-centric sensing systems [Eisenman 2008] like BikeNet have the distin-
guishing property that at least some of the sensors are owned and maintained
by the plebes, rather than by a scientific, industrial, or government establish-
ment. To facilitate the mass adoption of people-centric systems, users must
be incentivized to participate. BikeNet operates simultaneously as a personal
sensing system, a group sensing system, and a municipal sensing system,
depending on how queries to sample data enter the system and how the re-
sulting sensed data is shared. In the following, we discuss how to incentivize
BikeNet at these three levels, focusing on the issues of resource consumption
and user privacy.

2.3.1 Resource Consumption. In the sampling phase, resources such as
battery energy and local storage are certainly consumed from the cyclist’s cell
phone when it assumes the PersonalNode role, and from other sensors embed-
ded in the bicycle itself. However, the sampling itself is undertaken for the
direct benefit of the cyclist so there is no special need for incentivizing this
phase. The MetroSense architecture [Campbell et al. 2006] on which BikeNet
is based uses mobile sensors (e.g., BANs) in part as a publicly accessible sens-
ing platform where externally submitted queries may run. While this is not the
focus operating regime for BikeNet, in this case a quid pro quo scheme (e.g.,
serve a query, get a token to make a query) with the necessary supporting AAA
services may suffice. Note that for BikeNet in particular, the net energy cost of
sensing may be low: the batteries of embedded BAN sensors may be recharged
by harvesting energy from the pedaling of the cyclist, and the user’s cell phone
can be recharged daily by the user.

For the upload phase, muling may be used to help upload the data to the
server tier. Since muling consumes energy, storage, and radio bandwidth in the
handling of others’ data, system users may be hesitant to participate. In our im-
plementation of muling for BikeNet, the user profile loaded into the PersonNode
role indicates the amount of storage the user is willing to use for muling others’
data. Beyond this amount, the BAN ignores muling solicitations from others.
This limit on storage also acts as a coarse control on radio bandwidth and en-
ergy spent for others. Note that BikeNet operates fine in the case that all nodes
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refuse to allocate any storage for muling. The penalty is that upload delay is
increased, but this may not be an issue. We anticipate that most users will
be most interested in viewing their data locally on the bicycle, and after they
have completed the route and returned home (e.g., a la Nike+iPod). Beyond
this, we conjecture existing proposals for incentivizing peer-to-peer networks
[Gupta and Somani 2004] and mobile ad hoc networks [Zhang et al. 2007] can
be applied to data muling in BikeNet.

2.3.2 Privacy and Trust. Given that the sensed data in BikeNet originates
from the cyclist and her surroundings, a careful consideration of privacy risks
to the system users is required. Further, since an important aspect of BikeNet
is the sharing of collected data with others, the degree to which data originating
from others can be trusted should be considered.

As a personal sensing system, these issues are addressed using existing
technologies. In this mode the end consumer of the data is the cyclist herself so
data trust is not an issue, and the main privacy threat comes from the muling
process. This threat can be addressed by using standard encryption techniques
proposed for the sensor networking domain [Karlof et al. 2004] [Luk et al. 2007],
or more advanced techniques depending on the computational capabilities of
the PersonalNode.

Once the data resides in the cyclist’s secure BikeNet data repository, she
may choose to make selected data available to, for example, members of a cy-
cling interest group to which she belongs, and she may further share data with
the public as part of a community action initiative, for example, on pollution.
When users export data in this way across the Internet, we make the reason-
able assumption that existing technologies such as SSL or IKE are used as
appropriate to provide for data security. Contributions to such public forums
may be anonymous to protect user privacy (e.g., routes and times), or may be
identifiable to allow for ratings-based data trust systems, a la Amazon.com. Ad-
dressing this tension between user privacy and trust on the Internet is outside
the scope of this article, but has received much attention in the academic liter-
ature (e.g., Pai et al. [2008], Johnson et al. [2007]) and the public press (think
uproar over Facebook privacy policy). A recent report by the OCLC [De Rosa
et al. 2007] gives a largely nontechnical overview of many central issues in this
area.

3. SYSTEM EVALUATION

We build five fully equipped BikeNet bicycles, implement all of the aforemen-
tioned sensing roles using Tmote Invent motes and Nokia N80 mobile phones,
build a number of static and mobile SAPs, and implement a functional back-
end Web portal offering query submission and data retrieval services. In this
section, we present selected results from several groups of experiments respec-
tively targeted at: quantifying the cyclist experience from sensed data collected
about a single cyclist and his environment; looking at performance aspects of
key BikeNet subsystems; and measuring the real-time performance of a de-
ployed system across the Dartmouth campus and in adjacent areas of the town
of Hanover, NH, USA. We use a common path that we call the ground-truth
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route. This route includes a variety of urban cycling terrain, including built-up
busy roads in the town center with lots of cars and pedestrian traffic and quiet
back roads with little or no traffic. The route exposes cyclists to a variety of flat
terrain, gradual down hill, and steep uphill sections. Typically the ground-truth
route takes 25–30 minutes to ride and is nearly 5km long. The experiments are
conducted at rush hour and in the middle of the day when there is less traffic and
activity. We conducted many experiments over the period August 2006–August
2007 collecting a typical dataset of 0.8MB per ride per bike. We record the runs
using video from the video helmet (Figure 4(c)) that collects quad-directional
video of a ride for ground-truth validation of our correlation/inference methods
(not part of standard BikeNet equipment). BikeView [BikeView - the BikeNet
Web Portal 2007] contains an example of one such video recording.

3.1 Cyclist Experience Mapping

3.1.1 Inference and Cyclist Fitness Sensing. In this section we present a
series of plots characterizing cyclist behavior and the environmental condi-
tions encountered during a ride. We collect data from each of the sensing roles
mentioned in Section 2.2.1, and apply fusion techniques and trend analysis to
extract additional information from the raw data.

Figure 8(b) shows the measured slope profile of the route calculated from
TiltSensor readings versus distance (the Wheel/Pedal ratio curve is explained
later). The slope s is calculated according to s = arctan(x/ y), where x and
y are the TiltSensor’s measured x- and y-channel accelerometer readings, re-
spectively. We register accurate measurements when the bike is stationary;
error increases with speed and terrain roughness due to unfiltered vibrations
and cyclist behavior. The slope profile which matches the manually measured
ground-truth road segment (refer to Section 2.1.5) well (less than 10% deviation
from the ground-truth slope measurements).

Figure 8(c) shows the lateral tilt plotted versus distance. The lateral tilt
is calculated in the same manner just described for the TiltSensor. A cyclist’s
aggressiveness in turning is inferred. From the plot we correlate the increases
in lateral tilt magnitude shown on the y-axis, with corner turns expected from
the mapped GPS trace shown in Figure 8(a). Positive lateral angle indicates a
right-side lean whereas negative angles indicate left-side leans. In Figure 8(c),
we label (viz. A, B, C, D) a sample of the lateral tilts that can be correlated with
corner turns in the cyclist GPS trace (see Figure 8(a)), where at A, B, C, and D
the biker makes, respectively, a right, a right, a left, and a left turn. The sharp
left tilt (almost −20 degrees) is due to mounting the bicycle at the start of the
ride.

The quantitative aspects of the cyclist fitness include the slope of the
road/trail that the cyclist covers on his ride, the speed profile of the cyclist,
the gear used when traveling up a given slope, and the location of the route.
Figure 8(b) shows the slope profile of the road traversed on the cyclist’s trip, and
the ratio of the tire/wheel speed to the pedal speed. This ratio infers the approx-
imate gear the bicycle is in at a given point in the route, and provides a notion
of the fitness of the cyclist. This indicator is most accurate when the cyclist is
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Fig. 8.

Fig. 9. We used the free audio application Audacity to compute the FFT’s by turning our sensor

data into a WAV file. Based on the vibration noise observed in the tilt data, we applied filtering

before calculating the road slope.

going uphill, since when coasting downhill the pedals may not be moved much.
A strong cyclist can use a higher Wheel/Pedal ratio when climbing hills. In
Figure 8(b), intervals where the cyclist changes gears to climb hills are evident
(from roughly 1 to 1.25km and from roughly 2 to 2.7km), where the wheel/pedal
ratio is nearly 1.

Knowledge of the sensed path slope combined with the measured pedal speed
and wheel speed allows us to infer when a cyclist is coasting or braking. On a
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given bicycle there is a finite discrete set of pedal speed to wheel speed ratios
possible when the bicycle chain is engaged with a gear and providing thrust
to the bicycle. The cardinality of this set is equal to the number of gears the
bicycle has. If the measured ratio of pedal speed to wheel speed does not match
one of the allowable values we can infer that the cyclist is coasting. Braking can
be inferred in a similar fashion to coasting. It is likely a cyclist is braking if the
measured wheel speed slows while the slope is negative (downhill). Further,
braking is likely when going uphill if the measured wheel speed slows faster
than dictated by the slope of the hill. However, this is more challenging to
detect since inference of uphill braking is also dependent on unknown quantities
such as the combined mass of the bicycle and the cyclist, and the route surface
composition/coefficient of rolling friction.

Figure 10(a) shows a plot of the road slope versus distance along the ground-
truth route. Applying the simple inference technique of observing decreasing
speed when the slope is negative (downhill), we infer sharp braking intervals at
1.6km, 3.3km, and 4.1km, which are verified by our known cyclist behavior. In
these cases, we see a sharp decrease in wheel speed concurrent with a sustained
downhill slope. Similarly, if the pedal speed is near zero and the wheel speed is
high, we can easily infer the cyclist is coasting. In the figure, we infer periods
of coasting from roughly 1.25 to 2km and 2.7 to 3.3km.

Aside from route topography and personal performance metrics, cyclists are
interested in the ambience and safety of a route as a determinant in the over-
all enjoyment of the cycling experience. We take steps towards quantifying
the ambience in terms of automobile traffic, air quality, and sound level. The
presence of vehicles is often undesirable for cyclists who have concerns about
safety, noise, or pollution. To infer automobile traffic along the cyclist route
(Figure 8(a)), each BAN is equipped with a MetalDetector. When the Metal-
Detector passes close to any large metal body the Earth’s magnetic field is de-
formed and the presence of a car is inferred. To collect ground-truth data for
the experiment to compare against the inference from the MetalDetector, the
car rendezvous event is manually logged by the cyclist with a ButtonMote click.
We include the cases when the bike passes a car (parked or moving), and when
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a car passes the bike. We find that detection of cars more than 2m away is
unreliable with our hardware, so we do not try to log when a car passes in the
oncoming lane (about 3m away). Each click generates a record of GPS time and
location information. While, due to skew in button press times among various
cyclists in the experiment, this method is somewhat error prone with respect
to the exact location of observed cars, the logged button clicks do give an excel-
lent idea of car density along the route. Figure 10(b) shows the raw x-channel
and y-channel readings of a MetalDetector’s magnetometer plotted versus the
distance covered along the ride. ButtonMote events and positions of inferred
cars are overlaid on the same plot. The inference algorithm is run against both
x and y channel data and works as follows. First, the exponentially weighted
moving average of the magnetometer reading is calculated. If the difference
between the current value and the moving average is greater than a threshold,
and the current value is a peak (greater than both the preceding and succeeding
values), a car is inferred. The threshold values for x and y channels and the
moving average weight are learned by training with the readings from 0 to 1
kilometers. These trained values are then used along the rest of the route from
1–4.5 kilometers. While discrepancies between the ground-truth clicks and the
output of the detection algorithm exist, we note that our aim is not counting
the exact number of cars but answering the question, “Where may it be dan-
gerous to bicycle due to lots of cars?”. Figure 10(b) shows our simple detection
technique yields excellent overlap with the ground-truth in this regard.

To provide a measure of air quality along the cyclist’s route we conduct ex-
periments using a sensor measuring the level of carbon dioxide in the air sur-
rounding the cyclist. Figure 11(a) shows a trace of the carbon dioxide sensor
readings along the route shown in Figure 8(a) for two different cases, namely,
rush hour and low traffic. The peaks in the rush hour case occur when the
biker was cycling on downtown roads with a considerable presence of cars. In
fact, variation in carbon dioxide levels measured on roadways is likely to be
the result of automobile exhaust. While carbon dioxide has low toxicity at all
levels we recorded during our experiments, it can act as a predictor of other
noxious automobile exhaust constituents such as hydrocarbons, nitrous oxides,
and particulate matter. Thus, from readings of the carbon dioxide sensor we
can infer how enjoyable the traveled route is for a cyclist from the standpoint
of pollution. The portal snapshot in Figure 7 shows a CO2 map of the Hanover
streets on a summer weekday afternoon.

Another way to detect the presence of high vehicle density, and to char-
acterize the ambience of a route, is by measuring the sound volume. Sound
in decibels is plotted versus distance in Figure 11(b) for a ride along the
ground-truth route. The sound volume peaks near 80dB when the route passes
through the main intersections of town where the automobile traffic is more
prevalent.

3.1.2 Interpreting Cyclist Experience. In Figures 8(b)–11(b), we present a
large amount of raw data and first-level inferences. In this section, we intro-
duce two example metrics to help cyclists and other system users understand
and make use of the types of data that a BikeNet system provides. The metrics
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are weighted combinations of various sensor data types. In the metrics intro-
duced shortly (health and performance), we constrain ourselves to incorporat-
ing sensors for which we collect data in our prototype BikeNet implementation,
though there are other appropriate sensors that might reasonably be added.
The weights (e.g., a in the expression for Health that follows) comprise two sub-
weights: the user-defined preference/importance and the normalizing factor for
each element. The user-defined preferences reflect relative personal sensitivi-
ties (e.g., a cyclist with asthma might weight the CO2 higher) to the elements
composing a given index score. With the second subweight, we normalize each
element (e.g., CO2) according to its maximum dynamic range measured along
routes about which sensed data has been collected so far. At the backend, or
on a user’s local display, index scores can be plotted versus distance to see the
variations across the route to identify critical/interesting sections. For exam-
ple, the plot of health in Figure 11(c) shows a large dip in the health index just
before 1km where the CO2 spikes (refer to Figure 11(a)). Secondly, users can
compare the average index value among different routes at different times to
identify the most favorable routes for a given aim (e.g., joy-riding, exercise).
These index values can be mapped to colors and routes can be visualized as a
color-coded playlist. As the number and coverage of route segments are built
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up, a lookup service that returns the most healthy route at the desired time
between two endpoints becomes possible. By sharing index values for routes
of interest, and the user-defined preference weights, cyclists are able to learn
from each other about where the good cycling is.

Health. Air pollution and its effect on public health is of great interest in
many urban communities. In Austria, France, and Switzerland, by measuring
particulates specifically from motorized traffic the effect of air pollution on pub-
lic health is estimated to account for >20,000 adult deaths, more than 290,000
episodes of bronchitis in children, and more than 500,000 asthma attacks each
year [Kunzli et al. 2000]. Noise pollution is also a factor in urban areas. Accord-
ing to the Environmental Protection Agency’s Office of Noise and Abatement
Control in order to protect from hearing loss, one should not be exposed to more
than 70dB for an extended period of time. Meanwhile the average city traffic
is 85dB and in larger cities like New York, the noise level often exceeds 90db.
87% of America’s city dwellers are exposed to noise so loud it has the potential
to degrade hearing capacity over time [Orlando 2007]. Even in the small town
of Hanover, NH, USA (see Figure 11(b)) the noise level is often above 70dB on
the main streets at certain times. BikeNet sensing supports not only communal
pollution mapping, but on a more personal level it supports the categorization
of cycling routes according to their potential impact on a cyclist’s health. We
define a health index that combines data that indicate safety, noise, and air
pollution (either directly or through inference) as follows.

Health = 1.0 − a1 ∗ CarDensity − a2 ∗ CO2Level − a3 ∗ SoundLevel

From the raw values obtained from the MetalDetector we infer the density of
cars along the route, along with raw values of CO2Sensor and sound levels from
the SoundSensor, we derive values for the health index of routes that a cyclist
travels. A higher CO2 level and derived car density imply there are more cars
near the cyclist, creating an unpleasant experience due to exhaust, noise, and
increased danger, driving the health index down. Similarly an increase in noise
level indicates more traffic, people, wind, shouting, etc., reducing the health
index. Figure 11(c) shows the details versus distance of how the characteristics
of the route affect the cyclist, highlighting areas that should be avoided on
future rides. We use an equal user-defined preference weight of 1

3
for each of

the three elements that are included in the score. The dynamic ranges (i.e.,
measured difference between max and min) for car density, CO2 level, and sound
level are 12, 100, and 70, respectively. Therefore, we use a1 = 1

3
∗ 1

12
, a2 = 1

3
∗ 1

100
,

and a3 = 1
3

∗ 1
70

. The average value of the health index over the entire route
is 0.746 and the standard deviation is 0.096. As previously mentioned, this
average value can be used to help a user rank his routes according to his own
preferences and also to share with his peers.

Performance/Fitness. Some cyclists’ primary purpose in riding is for exercise
or for competition. For these riders we calculate a performance index, using
the values obtained from the WheelSensor, PedalSensor, and TiltSensor. We
compute a unitless measure of performance using the following equation.
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Perf. = b1 ∗ HillAngle + b2 ∗ WheelSpeed/PedalSpeed + b3 ∗ Distance.

When HillAngle is positive the performance index goes up; when it is negative
the index goes down. When the wheel/pedal ratio is high this indicates the bike
is in a higher gear (the wheel goes further with fewer pedal turns) and the
index increases. The further a rider travels (larger Distance) the higher the
performance index. The plot in Figure 11(c) shows the performance of a cyclists
traveling the ground-truth route. The weights are set according to the same
rationale as for the health expression, with values: b1 = 1

3
∗ 1

13
, b2 = 1

3
∗ 1

80
, and

b3 = 1
3
∗ 1

5
. With these user weights, the average value of the performance index

over the entire route is 0.253 with a standard deviation of 0.094.

User-defined Metrics. Part of the appeal of the BikeNet system to the casual
cyclist, is the ability to have fun defining new ways to visualize the cycling
experience. Therefore, beyond health and performance, a cyclist is free to define
her own metrics or index scores depending on how she likes to categorize her
rides. One such frivolous index might only have one weighted component, such
as the following definition of the enjoyment metric, adopted by many of the
experiment participants.

Enjoyment = 1.0 − c1 ∗ HillAngle

When the HillAngle is positive cycling is more difficult, reducing the enjoy-
ment metric. When the HillAngle is negative the cyclist can coast, resulting
in an increased enjoyment index. Figure 11(c) shows a plot of the enjoyment
index for a given rider of the course of the ground-truth route. Generally for
these subjective types of index scores, the selection of weighting factors is cy-
clist dependent since each person has different levels of like/dislike/tolerance
for annoyances, pollutants, etc. The weighting factor chosen here is c1 = 1∗0.03,
indicating that the cyclist dislikes steep rides (a negative weight would indi-
cate the opposite). Accordingly, the enjoyment index goes down during the steep
uphill parts of the ride. The average joy of the route is 0.510 with a standard
deviation of 0.063.

3.2 Social Cycling

There is a strong social element to bicycling, with many cyclists often riding in
groups. If all of the cyclists have BikeNet sensors then we would expect certain
types of sensors to return very similar readings for all the cyclists in the group.
This correlation amongst readings facilitates a number of backend data sharing
possibilities, including: automatic calibration checks of sensors, anomaly detec-
tion and noise reduction in sample data using shared information, and sharing
of sensor data with those who are missing sensors (e.g., the more expensive
ones.)

We examine the correlation between the sensor data in one of the multibicycle
experiments to explore this facet of BikeNet. In this experiment, the cyclists
travel in tandem and usually remain within about 10 meters of each other
though there are occasional separations of as much as 50 meters. The route
taken by the cyclists is the same as shown in Figure 8(a). We compare results
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Fig. 12. Comparison of data sampled from two bicycles traveling in tandem with a separation of

about 10m. The speed profiles (a), tilt slope profiles (b), and compass heading profiles (c) are highly

correlated as the cyclists traverse the same terrain with a small time lag. The distance-aligned

sound data shown in (d) is less correlated between the two bikes due to the highly temporal nature

of sound events. However, gross statistics such as average volume are still fairly well correlated.

from a representative two bicycles in the following plots. Figure 12(a) shows
the speed profile of two bikes, demonstrating a strong correlation in speed, al-
beit with a small lag, throughout the experiment as expected given the bikes
traverse the same terrain. Figure 12(b) shows the tilt profile of the same bikes,
again demonstrating a strong correlation in tilt. Figure 12(c) shows that com-
pass readings from the bikes are also strongly correlated. Sharing data among
members of a cycling group allows the system to “patch” the trace the compass
that stops reporting data between 0.4 and 0.65km with data from another in
its group.

Figure 12(d) on the other hand shows that the sound sensors on the two
bikes are only somewhat correlated (perfect correlation would be reflected in
all points along a 45 degree line, i.e., y = x). This graph is computed from the
sound data from both bikes, interpolated so that the samples are aligned at
the exact same distance along the path. Thus we are comparing the sounds at
the same location (but not necessarily at the same time.) The weak correlation
is due to several factors including multipath reflections of sound, wind noise
variations over time, one or the other riders yelling comments, inverse square
fading of volume with distance, cars passing each cyclist at different times,
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and phase differences from small differences in each bike’s path. While spe-
cific event signatures may be distorted or lost through intergroup sharing, cer-
tainly even without further processing the correlation between bicycles is good
enough that the average volume is sharable, for example, for use in route noise
mapping.

Some sensor data exhibits little or no correlation at all. The lateral tilt of each
bike is dependent on the way each cyclist rides and varies a lot from bike to bike.
GSR is tied to the stress response and is mostly unique for each cyclist. Gear
ratio is loosely correlated depending on several factors including the strength
and condition of the cyclists, the gear ratios available on each bike, the wheel
size, and the choice of each cyclist as to when he pedals and when he coasts.
Pedal speed has a similar loose correlation for the similar reasons. CO2 data is
highly correlated between riders in a flock since the exhaust of cars becomes
well mixed by the turbulence created by the cars motion. GPS data is strongly
correlated between cyclists depending on how close together they ride.

Thus, the sharing of some types of sensor data is feasible and likely to be
quite useful. In the course of this study we learn that the sample rates for sev-
eral of our sensors reduce the potential usefulness of shared data. For example,
we want to try correlating GSR to pedal RPMs to see if the periodicity of the
pedaling shows up due to the shifting pressure the cyclist put on the GSR elec-
trodes. However the 1Hz sample rate of the GSR output is too slow to capture
this phenomenon if it exists because people often pedal at somewhere near 1Hz.
Coming up with methodologies for examining the correlation of data that may
be skewed in time or location, and which may have only a fuzzy sort of corre-
lation, is an open challenge. For example, correlating CO2 concentration with
car detections from the magnetometer is complicated by the fact that the CO2

sensor reacts slowly to changes in CO2 concentration, taking about a minute to
respond to changes.

3.3 Services Performance

3.3.1 Cyclist Localization. In the BikeNet system, each data record is
tagged with location (and time) to provide context. Section 2.2.2 describes the
BikeNet localization design. While GPS is a natural solution for the implemen-
tation of the SyncSprinkler role, other lower cost and lower energy-consuming
implementations warrant an investigation given that every BAN may not be
equipped with a GPS receiver. Further, GPS is limited in its application since
it must have vision of at least three satellites. In particular, it is not always
functional in some common bicycling environments (e.g., among tall buildings
in a city, under dense overgrowth (tree canopy). In the following, we present the
accuracy of a WheelSensor in measuring total distance traveled by the cyclist.
We also present the accuracy of using the combination of WheelSensor and
CompassSensor for measuring localization (i.e., dead reckoning). In both cases,
a known starting location is required. Both results are shown with respect to
the GPS solution.

We present the absolute error of these localization alternatives in
Figure 13(a). As seen from the curve labeled “Wheel”, the deviation from the
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Fig. 13.

GPS-derived distance grows continuously over the course of the ride. A closer
look at the data shows that the WheelSensor is consistently underestimating
the distance traveled. The WheelSensor technique requires that the circumfer-
ence of the tire be known; we initialized the WheelSensor with the value we
measured with a tape measure. We conjecture that over the course of a ride
small errors in this measurement and changes in circumference from compres-
sion of the tire due to the weight of the cyclist accumulate to cause the con-
tinuously increasing error. As seen from the curve labeled “Wheel+Compass”,
the deviation in absolute localization from GPS is rather small until about the
half-way point of the route (at label A in Figures 13(a) and 13(b)). However, the
performance between label A and label B shows one limitation of this approach,
without further corrective measures. In this interval, the cyclist is riding next
to a large truck, causing the inferred track to deflect to the left. When the cyclist
reaches the intersection (label B), it turns right and leaves the truck. At this
point, the track again closely follows the GPS track, as seen from the minimal
error growth from label B to the end of the trace. However, due to the deflection,
the “Wheel+Compass” track is translated north and west with respect to the
GPS track (see Figure 13(b)).

While the WheelMote may be made accurate enough if the weight of
the rider is taken into consideration to correct for error introduced by
tire compression, from Figure 13 it is evident that exclusive use of the
WheelSensor+CompassSensor for localization is likely not accurate enough to
replace GPS. However, it might still be used as a complementary solution to in-
terpolate between occasionally received GPS updates. This is especially useful
in scenarios where the BAN’s GPS receiver is integrated with the cyclist’s cell
phone (e.g., Nokia N95), and energy consumption is a concern. For example, our
initial experience [Miluzzo et al. 2008a] with the Nokia N95 is in line with that
of other researchers [Gaonkar et al. 2008] and those in the blogosphere where
the lifetime of the standard battery shrinks from approximately 3 days to less
than 7 hours when the GPS receiver is left on continuously. We therefore duty
cycle the GPS, acquiring a signal for 150 seconds and sleeping for 850 seconds.
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Applying this strategy to the location error curve shown in Figure 13(a) reduces
the average error from 125.8m (no GPS correction) to 64.1m (10min GPS duty
cycle). Clearly, the GPS duty cycle could be shortened to improve accuracy, but
at the cost of increased energy consumption by the GPS hardware.

3.3.2 Data Uploading and Muling. Throughout the experiments, sensed
data is always stored in the local Flash memory of the Tmote Invent. Ultimately,
this data must be transferred to the backend data repository. Depending on
bicycle and cyclist mobility this transfer may happen directly from BAN to
SAP using the upload protocol (refer to Section 2.2.3), or may happen indirectly
via the muling protocol (refer to Section 2.2.3). Each BAN member knows the
identifiers of the other mobile sensing platforms in its BAN as a result of the
role assignment protocol (see Section 2.2.1), and will only mule data for mobile
sensors not in its BAN. The exception to this rule is that the PersonalNode
does mule data on behalf of its associated BAN members. There is no intra-
BAN coordinator for either upload or muling exchanges; BAN members transfer
their data independently and contend using CSMA for the wireless channel.
There are two main scenarios to consider: (i) the bicycle enters in range of a
SAP in which case the mobile sensors in the BAN upload their data to the
SAP directly or (ii) the bicycle is traveling out of range of the SAP, and must
rely on probabilistic mobility of other people or BANs to mule the data to a
SAP.

Since the Stop-and-Wait ARQ reliable transfer mechanism used in the mul-
ing and upload protocols is well known we omit any evaluation of this mecha-
nism per se. Rather, we aim to characterize the opportunistic sensor networking
environment provided by our initial prototype implementation of BikeNet. In
Figures 15(a), 15(b), and 15(c), we show results from a multibicycle experiment
where each cyclist follows a prescribed path; the paths intersect giving rise
to interbicycle muling opportunities. The paths followed by each of the four
bicycles used in the experiment follow the perimeter of a central grassy area
called “the Green” commonly used for recreation at Dartmouth College. The
area of the Green is approximately 150m by 100m. Two cyclists ride clockwise
around the Green and the other two cyclists ride counter clockwise. The trans-
mission range of the Tmote Invent reaches fewer than 50m on average so the
connections among the cyclists are intermittent. However, there are data ex-
change opportunities when the cyclists who are moving in opposite directions
pass by each other. After ten minutes of circling around the Green, each cy-
clist leaves the square in turn at fifteen minute intervals and parks the bicycle
within the radio range of the SAP installed at the Sensor Systems Lab in the
Computer Science building which is 250m away from the northeast corner of
the Green (i.e., out of range).

Characterizing interbicycle communication. To understand the expected data
transfer opportunity during the bicycle rendezvous periods, we run a controlled
experiment using two bicycles where Bike A transfers CompassSensor data as
fast as possible to Bike B. We conduct ten independent trials where Bike A
and Bike B travel towards each other starting at opposite ends of the path.
We record the average speed of each bike and then average each bike’s speed
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Fig. 14. Characterizing interbicycle communication opportunity during a mobile rendezvous.

Transfer throughput exhibits an asymmetric pattern likely due to radio absorption by the cyclists’

bodies.

over ten runs. The distance separating the bikes is reported as (position of Bike
A - position of Bike B), where the position is measured using markings along
the path. A profile of the packet transfer rate averaged over the ten bike-to-bike
rendezvous is shown in Figure 14. The average speed of the reference bike and
other bicycle are recorded as 3.45 meters per second and 2.55 meters per second,
respectively. The average packet transfer rate recorded for an average contact
time of 10.75 seconds is 19.8 packets per second. This results in an average
reliable transfer of 556 bytes between the bikes.

The throughput profile in Figure 14 exhibits an asymmetry whereby when
the bicycles are approaching each other (positive separation distance) the
throughput grows gradually to a peak of 50 pkts/sec, while shortly after the
bicycles pass each other (zero distance) the throughput falls precipitously to
zero. While the exact signature shown in the figure depends on the body size
of the cyclist and the exact trajectories of the cyclists, the transfer rate trace
likely describes qualitatively all people-centric rendezvous. In our particular
experiment the sensor is attached to the handlebar on the front of the bike.
In follow-on work [Miluzzo et al. 2008b], we show that the drop is due the the
additional attenuation presented by the body of the cyclist rather than an other
issues (e.g., we discounted Doppler shift as a factor).

Muling performance. In Figure 15(a), we show the number of data packets
directly uploaded and the number of data packets muled to the SAP. Data
records have unique identifiers to allow filtering of duplicates between muled
and directly uploaded packets. The x-axis of the plot shows the identifiers of the
Tmote Invents in each BAN. The Tmote Invents with identifiers 1 through 6
belong to BAN-1, 11 through 16 belong to BAN-2, 21 through 26 belong to BAN-
3, and 31 through 36 belong to BAN-4. This x-axis is the same for Figures 15(b)
and 15(c). Figure 15(a) shows that the rendezvous intervals in the experiment
support a substantial amount of muling exchange. Overall, more data packets
are directly uploaded than muled, but a considerable amount of data are muled
before uploading (e.g., almost half of BAN-1’s data).

Figure 15(b) presents the latency of direct uploading and muling. We mea-
sure the latency as the time difference from the time the sensor data packet is
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generated to the time the packet is uploaded to a SAP, either by the origina-
tor of the packet or by a mule. The result clearly shows the benefit of muling.
The data from BAN-3 and BAN-4 are muled by the Tmote Invents on BAN-1
and BAN-2 which enter within radio range of the SAP earlier than BAN-3 and
BAN-4. As a result, the data from BAN-3 and BAN-4 are delivered earlier with
muling than with direct uploading. In particular, data from BAN-4 experience
an average of 1500 seconds less delay with muling than with direct uploading.

Muling implies a performance penalty due to the additional radio transmis-
sions that are required on the path from origin to mule(s) and mule(s) to SAP.
Figure 15(c) illustrates the transfer efficiency for both muling and direct up-
loading as a function of the packets transferred. Here we define efficiency as
the ratio of data bytes transferred to the total bytes sent (including data packet
replicas and retransmissions). A higher efficiency for a given transferred packet
reflects a number of possible factors, including a higher-quality radio link and
less congestion between sender and receiver, both of which lead to fewer re-
transmissions. The data origin always stores a copy in its local Flash hoping to
upload the data directly to a SAP. In our experiments, the muling replication
degree is one, meaning we allow the originating Tmote Invent to transfer only a
single copy of the data to another mobile sensor via the muling protocol. Further,
we do not allow multihop muling; only the originating node may replicate data.
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Figure 15(c) shows that the muling efficiency is less than uploading efficiency,
as expected. While the uploading efficiency ranges from 40%–68%, the muling
efficiency ranges from 12%–33%. The difference between the muling efficiency
and the uploading efficiency represents the cost for improving the data delivery
delay. The effect of replication degree on performance is multifaceted. On the
one hand, replication improves the probability for delivery and tends to give
improved delivery delay performance, but it also lowers efficiency and limits
storage space for unique data. When determining the replication degree, one
must carefully consider the system requirements in terms of average delivery
delay, and the costs involved in providing such delay performance. Data repli-
cation is a problem in many delay-tolerant networks. We defer to the wealth
of research studies on the topic (e.g., Ip et al. [2007], Wang et al. [2005], Chen
et al. [2006]). In the BikeNet system, the bulk of collected data is highly delay
tolerant since the cyclist herself is the primary consumer of the data (i.e., it is
fine if the data arrives at the same time as the rider). Similarly, data via direct
upload is likely sufficient for secondary consumers of the cyclist’s data, such as
cycling interest groups and community action groups. However, BikeNet pro-
vides for the real-time upload of high-priority data (e.g., emergency signals, or
periodic location) via the Nokia N80 data connection.

3.4 Town-Scale System Scenario

We build five sensor bikes and implement a small-scale BikeNet testbed with
seven static SAPs at a number of points across the Dartmouth College campus
and in the town of Hanover to validate and evaluate an operational BikeNet
system. In what follows, we present results from data collected by a group
of three cyclists on the morning of November 20, 2006. We have collected a
significant amount of data from over 50 different BikeNet experiments starting
in summer 2006 but here only present data from a single-shot experiment with
the three cyclists. The three cyclists’ routes and the times they started their
rides are preplanned. Cyclists 1 and 2 live near each other and ride much of
the way toward campus from the town together.

Before getting to the campus they rendezvous with cyclist 3 before cyclists
1 and 3 depart toward the library while cyclist 2 heads to the Computer Sci-
ence building. The longest journey time for a cyclist is 40 minutes. The results
presented in this section provide insights into how live sensor data collected by
each of the bikes is either muled or directly uploaded to a passing SAP, in an
opportunistic manner.

We first consider the time taken for each cyclist to upload its data into the
backend data repository via direct upload to a SAP and present the results in
Figure 16(a). Note that in this case the data uploaded to a SAP by a cyclist’s
BAN includes data originating in the local BAN and any data muled on behalf of
other BANs. Figure 16(a) shows the cumulative delivery function versus the trip
time. We define cumulative delivery function as the cumulative fraction as the
trip proceeds of the total data packets delivered to the backend. For example, at
520 seconds into the experiment cyclist 2 has delivered 40% of its data including
any data it may mule on behalf of cyclists 1 and 3. The initial lack of any data

ACM Transactions on Sensor Networks, Vol. 6, No. 1, Article 6, Publication date: December 2009.



6:34 • S. B. Eisenman et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500

C
u
m

u
la

ti
v
e
 D

e
liv

e
ry

 F
u
n
c
ti
o
n

Time (seconds)

A

B

C

Cyclist 1
Cyclist 2
Cyclist 3

(a) Data delivery traces for three cyclists using direct

upload from BAN to SAP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

C
u
m

u
la

ti
v
e
 D

e
liv

e
ry

 F
u
n
c
ti
o
n

Time (seconds)

A
B

C

Direct
SAP augmented

Muling agumented

(b) Comparison of different delivery methods for sin-

gle cyclist’s data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500

C
u
m

u
la

ti
v
e
 D

e
liv

e
ry

 F
u
n
c
ti
o
n

Time (seconds)

A

B1 SAP
2 SAP
3 SAP
4 SAP
5 SAP

(c) Evaluation of delivery delay versus number of SAP

encountered en route.

Fig. 16.

delivery evident in the plots is due to the initial absence of SAPs along the route
from the homes of cyclists 1, 2, and 3. Cyclists 1 and 2 encounter a SAP along
Main Street in Hanover at approximately 520 seconds into their ride. Even
though only a modest number of SAPs are deployed we can see from the plot
that all bikes are capable of delivering sizable fractions of their data before their
trips end. For example, cyclists 1 and 2 deliver approximately 50% and 40%,
respectively, of their data to the backend repository before the half-way point of
the trip time. From Figure 16(a), we observe that data is transferred between
bikes and SAPs in quick bursts. The amount of data transferred in strongly
influenced by the short contact times which are a product of the short-range
radios used in the BikeNet experiments.

Figure 16(b) shows the delivery of sensor data that is generated by only
a single cyclist-in this case cyclist 1. We consider three scenarios of possi-
ble transfer between cyclist 1 and the data repository: Direct, which is where
cyclist 1 keeps all its data, does not replicate, and only uploads to the SAP
at the Computer Science building (the cyclist’s destination); SAP augmented,
which is where cyclist 1 opportunistically transfers data to SAPs it encounters
along the way with no help from mules; and finally, Muling/SAP augmented,
which exploits muling and opportunistic use of SAPs to transfer cyclist 1’s data
to the repository. Figure 16(b) shows the performance of these three types of
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communication across the trip time. From the plot we can observe the direct
benefit of muling: cyclist 1 is disconnected for approximately 15 minutes be-
tween points A and C in the plot of the cumulative delivery function, but at the
intermediate point B the delivery of cyclist 1’s packets continues.

Next, we evaluate the impact of the incremental addition of SAPs to the
system on the average delay of data delivered from the three cyclists to the
backend repository. As the number of SAPs increases from one to five, we plot
the cumulative delivery function versus time. We run five trials at each SAP
level, each with the three cyclists riding prescribed routes from their respective
homes to the Computer Science department. Figure 16(c) shows the cumulative
delivery functions for each of the five cases, truncated at the time when 100%
of data is delivered by all cyclists for the case of five SAPs. The plot shows
that at the time all data is uploaded in the five SAP case, only 78% and 70%
of data is uploaded in the three SAPs and one SAP cases, respectively. When
the cyclists return to the Computer Science building they become stationary
and upload their remaining data. This is reflected in the steep step in all the
curves at point B in Figure 16(c), representing a large delivery of the remaining
data from the bicycles to the SAP. In contrast, the flat portions of the curves,
for example, in the area of point A, represent periods when cyclists 2 and 3
are disconnected from the network with no other mobile sensors acting to mule
data to the SAPs. From Figure 16(c), we can also observe that the addition of a
new SAP yields a nonuniform improvement in the data delivery performance.
The impact of adding SAPs to the system on the data delivery delay is highly
dependent on many factors, including the SAP deployment density and the
location of the SAPs in relation to routes frequented by the cyclists.

4. RELATED WORK

A number of companies (e.g., Garmin Edge 305 and Garmin Emap, Garmin
International [2007] and CicloSport HAC5 [2007]) have begun to offer products
that integrate data from multiple sensors on a single user display, including
biometric, advanced cyclo-performance and GPS location data, showing the in-
terest in quantifying performance. These range from rather limited $40 devices
to very capable $500 devices [CicloSport HAC5 2007]. Products with a slightly
different focus offer integrated hardware and software solutions (e.g., Garmin
Edge 305 and Garmin Emap, Garmin International [2007]) to help cyclists
with preride route planning, and in-ride navigation cues via predownloaded
maps combined with real-time GPS data. Others (e.g., tri [2007]) offer offline
planning software packaged with an online GPS tracking service available via
a select set of cellular providers. BikeNet goes beyond any of these commer-
cial offerings by adding environmental sensors to give context to performance.
Further, the BikeNet system incorporates a dual-mode wireless networking ap-
proach for data delivery to a backend analysis and visualization tier, providing
usable and understandable information to users. By providing this dual-mode
architecture, we aim to support both delay-tolerant query/delivery as well as
expedited query/delivery models. BikeNet supports delay-tolerant interaction
for the sake of the biker doing postride analysis of his entire ride, and real time
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interaction for more time-sensitive operations by community consumers of the
data.

The wearable computing and personal area networking fields have produced
numerous examples [Feldmeier and Paradiso 2004; DeVaul et al. 2003; Zim-
merman 1996; Gyselinckx et al. 2005] of wireless networks that operate on
and near the human body and interact with the wearer’s surroundings or
other people’s devices. There has also been work in delay-tolerant network-
ing [Scott et al. 2006; Kansal et al. 2004; Wang and Wu 2006] to improve
data transfer in networks that are often disconnected as BikeNet is. BikeNet
synthesizes these ideas, using opportunistic rendezvous among personal com-
puting devices (e.g., cell phones), embedded bicycle sensor networks, and sen-
sor access points. BikeNet adds an implementation of backend data storage,
analysis, and visualization services, to translate raw sensor data streams into
meaningful information about personal health and performance and commu-
nity health. BikeNet provides a complete opportunistic sensing system tar-
geted at a cyclist experience application, and adds a new dimension to delay-
tolerant networking by investigating both human-to-bike and bike-to-bike data
transfer.

Mobile sensing systems have been proposed in other application contexts.
Zebranet [Liu et al. 2004] monitors zebras wearing sensor collars using a mo-
bile jeep-mounted radio gateway. The Cartel project [Hull et al. 2006] provides
a mobile communications infrastructure based on car-mounted communication
platforms exploiting open WiFi access points in a city, but unlike BikeNet it
does not integrate either a sensing or sensed data analysis component. SATIRE
[Ganti et al. 2006] presents a software architecture for smart clothing, similar
to the BikeNet three tier architecture. The MetroSense Project [MetroSense
Project 2007] proposed a mobile sensing system for skier-based sensing [Eisen-
man and Campbell 2006]. More recently, an airborne wireless sensor network
composed of Micro-Aerial Vehicles (MAVs) has been implemented [Allred et al.
2007] to enable low-cost-high granularity atmospheric sensing of toxic plume
behavior and storm dynamics, and provide a three-dimensional view for mon-
itoring ecological systems. BikeNet differs in its application scope and its in-
clusion of bicycles as mobile sensing platforms for personal and environmental
sensing. Further, we have developed BikeView, our community oriented Web-
based portal for visualization and sharing of cycling health and performance
information.

Tightly bound to the domain of people-centric sensing is the issue of privacy
[Johnson et al. 2007]. Though the bulk of sensed data collected by the BikeNet
system may seem innocuous (especially since it may be later shared with the
community anyway), concerns about personal performance, and especially lo-
cation tracking, must be addressed. While backend data sharing is regulated
by the user, in-network techniques such as muling along with the possibility of
wireless snooping [Saponas et al. 2007] mandate some privacy solution. While
we do not integrate privacy protection into our prototype, we note the work
of others can likely be leveraged. We conjecture that concepts such as virtual
walls [Kapadia et al. 2007] can be used when deciding what information to re-
veal in real time via the backend or to peer BANs. Lightweight encryption (e.g.,
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TinySec [Karlof et al. 2004], MiniSec [Luk et al. 2007]) may used for intra-BAN
communications and to protect against data prying on the part of mules.

5. CONCLUSION

In this article, we have presented the detailed design, implementation, and
evaluation of the BikeNet mobile sensing system, adding to the growing body
of work exploring opportunistic sensor networking techniques. BikeNet rep-
resents the first comprehensive mobile sensing system quantifying the cyclist
experience. BikeNet provides for the collection and analysis of personal perfor-
mance and communal environmental sampling. BikeNet supports two modes of
operation in support of delay-tolerant and real-time sensing, and collected data
can be presented both locally to the cyclist or to others via backend services.
The BikeView portal concept promotes social networking among cyclists, and
the broader community. Initial results are encouraging and demonstrate some
of the value that mobile wireless sensor networks can bring to our lives, in-
cluding how we are impacted by our environment and how we can regulate our
activity patterns to improve our quality of life. While our current experiments
have concentrated on sensing for the cyclist and bicycle-mounted sensors we
conjecture that the BikeNet system could be implemented on other vehicles
such as cars with little modification to the software system.
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