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ABSTRACT
There is a growing need to support localization in low-power
mobile sensor networks, both indoors and outdoors, when
mobile sensor nodes (e.g., mote class) are incapable of in-
dependently estimating their location (e.g., when GPS is
inappropriate or too costly), or are unable to leverage lo-
calization schemes designed for static sensor networks. To
address this challenge, we propose ambient beacon localiza-
tion (ABL), an unconventional approach that allows mobile
sensors to localize by exploiting their ambient physical en-
vironment. Ambient beacon localization combines machine
learning and free range beacon-based techniques to bind dis-
tinct characteristics of the physical world that appear in sen-
sor data of known locations, which we call ambient beacon
points (ABPs). Supervised learning algorithms are used to
allow mobile sensors to recognize ABPs, i.e., those physi-
cal locations that are sufficiently distinguishable in terms of
sensed data from the rest of the sensor field. Ambient beacon
localization leverages the very same sensed data that nodes
are already collecting on behalf of applications. When a mo-
bile sensor finds itself at an ambient beacon point it starts
to beacon that location so that other nodes in range of an
ambient beacon can localize themselves, for example, by ap-
plying existing beacon based localization schemes. In this
paper, we present the design of ambient beacon localization
and its initial evaluation in a building-sized testbed. Our
work is at an early stage but our experimental testbed and
simulation results demonstrate that this unusual approach
to localization shows promise.
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1. INTRODUCTION
Localizing sensor data is a fundamental requirement for

many sensor network applications, providing the necessary
context to interpret the collected sensor data. Much of
the work on localization in sensor networks found in the
literature [5] [6] [7] assumes static nodes that use multi-
hop communications. The performance of these schemes
are typically sensitive to dynamic topology changes and dis-
connection issues. Furthermore, a new class of sensor net-
works based on mobile nodes [2] [3] [4] [1] results in frequent
topology changes and disconnection, making the use of ex-
isting sensor networks localization schemes impractical. To
study the sensitivity of existing localization schemes to mo-
bility, we evaluate three related beacon-based localization
algorithms: the Monte Carlo Localization (MCL) [5], which
is designed for mobile sensor networks, and the Amorphous
[6] and Centroid [7] schemes, which are representative of two
major classes of algorithms (i.e., multihop distance-vector
based and single hop RF connectivity based, respectively)
used by a number of existing sensor network localization
systems. We use simulation to study the performance of
these schemes where node mobility is based on empirical
ZebraNet [3] traces, one of the few examples of a deployed
mobile sensor network with publicly available data. Unlike
the actual ZebraNet deployment, in the simulation only a
fraction of the nodes (i.e., beacons) have an external means
to self-localize. Figure 1 shows the proportion of failed lo-
calization requests from nodes during each simulation run
plotted versus a varying ratio of beacon nodes (see Section
3.2 for further simulation details). We see a large fraction of
nodes are unable to localize under the Centroid and Amor-
phous methods even with high beacon node ratios. Although
in Figure 1 MCL has a low failure rate in providing location
estimates, we observe these can be highly inaccurate with
errors as high as four times the radio range. In the absence
of application requirements commenting on such levels of
error is difficult, however, [8] shows that geographic routing
can perform adequately with errors of up to 0.4 times the
radio range.

While existing mobile sensor deployments are small scale
(e.g., ZebraNet [3] and Cartel [4] use fewer than ten nodes)
and use GPS-equipped nodes with a relatively large form
factor, in general, mobile sensor networks will include re-
source or size-constrained nodes (e.g., sensors embedded in
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Figure 1: Comparison of a number of existing local-

ization techniques, considering the ratio of failed lo-

calization attempts under variable beacon node den-

sity.

everyday mobile objects such as shoes [20], clothes, bikes, or
attached to humans [2] or animals [3]). We are interested in
targeting such embedded low-powered mobile sensors (e.g.,
mote class and smaller) that do not have access to GPS or
a similar localization technique.

In this paper, we propose ambient beacon localization (ABL),
an alternative technique that generates location estimates
by exploiting the sampled sensor data already requested by
sensing applications. Our approach builds on the identifica-
tion of distinguishing features reflected in the sensed data
that can be mapped to physical locations. Some locations
maybe easily recognized from the sensed data while many
others may be too similar to be useful. We take a prag-
matic approach to the problem and only attempt to rec-
ognize those sensed locations that are highly distinctive -
we call these locations ambient beacon points (ABPs). Un-
der the ABL system, sensor data from the network is an-
alyzed and once distinguishable features are identified they
are mapped to location coordinates. This part of the system
is currently based on an offline supervised learning stage.
The learning stage produces a classifier algorithm that is
able to map feature vectors to those coordinates that are
recognizable. This classifier is disseminated to all mobile
sensors. Nodes input their collected sensor data to the al-
gorithm which outputs location co-ordinates when possible
allowing the node to periodically self-localize. Because only
distinct locations are used as ABPs they will tend to be only
sparsely distributed across the sensor field. To increase the
frequency at which mobile sensors can localize any sensor
located at an ABP (therefore aware of its own position) as-
sumes the additional role of a beacon node for the time it
remains at the ABP. Mobile sensors receiving these ambient
beacons can use a beacon-based localization algorithm (e.g.,
using [7]) to compute their own position estimate.

The benefit of ABL is two fold. First, the sensitivity of
localization performance is no longer tied to connectivity
between permanent beacons and non-beacons making ABL
well-suited for mobile sensor networks. Second, localization
leverages sensed data already collected by the main sensing
function of the network. In a sense localization estimates
“come for free” without the need for permanent beaconing
infrastructure (such as GPS units) only requiring periodic
retraining of the classifier. In this paper, we present the
design of ABL and its initial evaluation in a building-sized

testbed. While our research is at an early stage, initial ex-
perimental testbed and simulation results show the general
utility of the idea. Additional work to fully analyze ABL
is ongoing, using more extensive simulation, modeling, and
large-scale experimentation.

2. AMBIENT BEACON DESIGN
The problem of identifying a set of unique features based

on sensed data and binding these to all locations in a re-
liable and accurate manner is difficult, requiring sophisti-
cated classification techniques, and addressing aliasing ef-
fects. Furthermore, the process must differentiate between
the changes in observed sensor data that are due to the mo-
bile node shifting physical position and those changes in the
sensor data that are due to physical changes over time at
the particular location itself. Thus, our approach is to focus
only on using locations whose characteristics produce rela-
tively easily identifiable and largely time-invariant features
in the sensed data. Examples of such locations include those
with: structures or obstacles (e.g., narrow alleyways, rock
formations); unusual physical topology (e.g., speed bumps,
stairs, wheel chair ramps, potholes); activities that are spe-
cific to the location (e.g., the rapid acceleration at a highway
on ramp, animals drinking at a watering hole); predictable
patterns in environmental data (e.g., a sharp rise in CO2

and noise at the border of a city park, or a busy traffic
intersection).

ABL uses supervised machine learning techniques to pro-
duce a simple classifier algorithm capable of mapping col-
lected sensor data to a set of locations. Under supervised
learning first a feature vector is defined, the elements of
which are derived from the sensor data itself. Next, fea-
ture vectors that have been correctly labeled with locations
are input to the training stage. Any suitable form of ma-
chine learning (i.e., such as decision trees, neural networks,
belief networks or k nearest neighbors variants [9]) can be
applied to these location labeled feature vectors. The out-
put of the training stage is a classification algorithm that
is disseminated to mobile nodes for later use in recognizing
ABPs on the basis of gathered sensor data. The labels (lo-
cations) and feature vector (based on sensor data) are care-
fully selected resulting in a classifier of high accuracy with
low state and computational requirements while requiring
infrequent retraining. By only using a subset of locations
that are most easily distinguished the accuracy and simplic-
ity of the classifier can be maintained. The feature vector is
only constructed from a subset of the elements found to be
useful (e.g., the rate of change of temperature, the output
of a compass, etc.), which are easily derived from the sensor
data and largely time invariant. Such an approach can re-
sult in the reduction of possible ABPs across the sensor field
but promotes a simplified classifier design and construction.
By loosening these constraints (e.g., accepting less highly
distinct ABPs) we can increase the ABP density across the
sensor field but at the cost of increasing the complexity (e.g.,
requiring more frequent retraining) of the classifier.

In our ABL implementation, all nodes initially proceed
through a bootstrapping phase where their classifier is ini-
tialized, after which it can be updated to reflect physical
changes in the sensor field. Such updates are performed by
retraining the classifier on the basis of periodically delivered
sensor data that has already been location-stamped without
the aid of the ambient beaconing process. This location-



Period 1 Period 2 Period 3
Region 1 49 secs 71 secs 97 secs
Region 2 151 secs 197 secs 235 secs
Region 3 57 secs 105 secs 109 secs

(a) Interval between ambient beaconing assum-
ing all building occupants during the experi-
ment wore sensors.

Period 1 Period 2 Period 3
Failure Ratio 0.07 0.19 0.26

(b) Ratio of nodes that failed to determine a lo-
cation estimate during different observation period
traces.

Region 1 Region 2 Region 3 Default
Region 1 79% 4% 17% 0%
Region 2 0% 83% 11% 6%
Region 3 1% 15% 74% 10%
Default 1% 3% 6% 91%

(c) Confusion matrix for the location classifier.

Table 1: Results of Human Experiments

stamped data is provided by independently location-aware
mobile nodes (e.g., equipped with GPS) that either contin-
uously roam the sensor field gathering data or are deployed
only when classifier updates are necessary. We collect the
training data and train the classifier as part of an offline pro-
cess. The resulting classifier is then disseminated to mobile
sensors from data collection points in the network.

3. EXPERIMENTATION
In what follows, we present a feasibility study of ABL in-

cluding initial results from both a small scale human-based
set of experiments, and simulations of a larger scale mobile
sensor deployment. At this stage of our project we have
not implemented a full ABL system but rather our experi-
ments aim to answer questions concerning: (i) the feasibility
of creating a location classifier; (ii) the impact of mobility
patterns on ambient beacon generation; and finally (iii) the
effectiveness of ambient beacons as a method of localization.
We study these issues as an initial evaluation of the concept.

3.1 Human Experiments
For the human-based experiments, we consider a scenario

where Moteiv Tmote Invent devices [10] are carried by all
people in the Computer Science building at Dartmouth Col-
lege. To approximate this scenario, we perform a number
of experiments. In the first experiment ten people carry
motes performing mobile sensing across the ground floor of
the building (≈ 1000m

2). Motes sample and locally store
temperature, light, and 2-D accelerometer data. Each sam-
ple is associated with a location region of 3m

2 which we
derive from manual measurements. The second experiment
collects human pedestrian flow characteristics for occupants
of the building. In the third experiments we extrapolate our
findings across the entire building population.

We construct the classifier using the J.48 decision tree
algorithm as implemented in Weka [9], a workbench that
provides implementations of a variety of common machine
learning algorithms. The output of the algorithm is a de-
cision tree that classifies instances of feature vectors with a
label associated with a location. In the experiment, the set

|Region 3|-----------------|Region 2|---------|Region 1|
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Figure 2: A representative time series trace from

a sensor attached to an individual. The y-axis is a

unitless multimodal representation of the elements

of the feature vector. The x-axis provides the output

classifier labels based on the feature vector.

of labels applied only covers three distinct locations with a
fourth default label that represents all other locations. By
keeping the set of labels small we look at a case where clas-
sifiable locations (ABPs) are sparse. We find under these
conditions an effective feature vector includes the following:
rate of change of light intensity; rate of temperature change;
the raw temperature value; a moving mean and its standard
deviation of the y-axis value of the 2-D accelerometer; the
output of a three state (viz. walking, stationary, stair climb-
ing) activity inference module based on clustering x-axis and
y-axis accelerometer data; and an index indicating the ra-
tio of artificial to natural light based on expected oscillation
frequencies of florescent lights in this case. Figure 2 is an
example time series trace showing the collected values of the
feature vector changing due to the movement of an individ-
ual in the building. The values of the feature vector elements
are shown on the unitless y-axis and are derived from the
gathered sensor data. Along the x-axis of the plot we show
the classifier output that results from this trace. Table 1(c)
presents a standard confusion matrix representation of the
classifier performance. In the table, the labels output by the
classifier are shown as columns and the actual physical po-
sitions are shown as rows. The percentage in each table cell
indicates the frequency over nineteen trials at which par-
ticular labels are assigned while the sensor is within one of
the three regions/ABPs. Data used in the training phase is
excluded from consideration. The classifier performs fairly
uniformly across all three of the regions, generating the cor-
rect labeling approximately 80% of the time. The results
of Table 1(c) are supported by 10-fold cross validation per-
formed with the classifier against the training data; this test
reported an accuracy rate of 83.3%.

The effectiveness of ABL is influenced by the arrival rate
of mobile sensors at ABPs. Given the effect of deployment
density we extrapolate our findings from only 10 mobile sen-
sors, to the case where all building occupants are carrying
mobile sensors. To do this we monitor the pedestrian flow
in each of the regions that the classifier is trained to label.
We use simple laser tripwire devices set up at each of the
locations which transmit timestamped readings to nearby
static sensors that are part of our permanent building sen-
sor network testbed. We gathered traces during a one week
period. From each trace we extract the average pedestrian
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Figure 3: Localization accuracy achieved during the

human experiments for a randomly selected set of

positions within the building based on pedestrian

traces taken at three different periods during a

week.

arrival rate to each of the three classifiable locations, refer-
ring to them as periods one through three in our results. The
mobile sensors beacon the location as long the classifier con-
siders the sensor to be within the region. Since the tripwire
only provides arrival times we combine these arrival times
with the average beaconing duration at each of the three
locations that we observe during the individual 10 person
trials. Table 1(a) reports the interval between ambient bea-
cons being emitted for each location using the combination
of these arrival time averages and duration lengths.

To gage the efficacy of ambient beacons in determining lo-
cation we place stationary Invent motes in each of the three
classifiable locations and program them to beacon according
the arrival rate during the pedestrian monitoring and for a
beaconing duration based upon the 10 person experiments.
This emulates the situation where all building occupants are
carrying sensors that beacon while visiting a location they
recognize (ABPs). At this point of in the evaluation five
people wear mobile sensors and walk the same predefined
path within the building. We measure the localization fail-
ure ratio and localization error for each person walking the
path. The localization failure ratio is the number of times a
location estimate cannot be computed either from ambient
beacons or via the output of the classifier when localization
is attempted every 15 seconds. Location estimates based on
ambient beacons use the centroid-based technique from [7].
Localization error is represented as the difference between
the location estimate and the actual location of 14 randomly
selected distinct positions along the path. Each time period
in which we monitor pedestrian traffic we observe slightly
different arrival rates. Consequently, we perform all exper-
iments using the differing arrival rates from each of these
time periods. We repeat each experiment four times for
each person, for each time period.

Table 1(b) reports the localization failure rate for each of
the time periods given in Table 1(a). Figure 3 shows the
localization error with the ambient beacon based estimates
being in line with expectations of free-range beacon tech-
niques under these conditions. Note, much of the error is
due to difference between assumed and actual RF propaga-
tion.

3.2 Simulation Results
In what follows, we investigate the performance between
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Figure 4: Comparison of the localization error of

ABL relative to MCL.

a number of proposed localization schemes and ABL. In the
scenario, all nodes are mobile but not all nodes are capable of
independent self-localization. We use a discrete time event
simulator with a pseudo-disk model for radio propagation,
where a tunable random variable determines the amplitude
of random variations over time around the nominal disk ra-
dius. The node mobility traces are based on actual GPS
traces taken during the ZebraNet deployment [11]. Because
the number of Zebras used in ZebraNet is small we augment
these traces with semi-synthetic additional traces, applying
the same methodology discussed in [12]. For all simulations
we use 100 nodes moving in a sensor field sized 1000 by
1000 units. We present results based on ten experimental
trials for each data point with each experiment spanning
1800 simulator time units. Nodes have a transmission range
of 50 units.

We compare the performance of three existing techniques
(viz. MCL [5], Amorphous Localization [6] and Centroid
[7]), using implementations of these algorithms provided by
the authors of [5]. At each discrete time step during the
simulation localization is attempted for all nodes using each
algorithm. Figure 1 shows the fraction of the localization
attempts that fail as the ratio of beacon nodes in the network
is varied while the size of the network remains constant.

To compare the performance of ABL to the other schemes
under common conditions we simulate the operation of the
ABL algorithm by applying observations from our human
based experimentation. All simulated nodes are provided
with an initialized classifier (learning has already occurred;
we assume steady state performance w.r.t. classifier train-
ing). All nodes beacon on the basis of the classifier output,
which has a simulated error frequency set according to Table
1(a). We set the density of ABPs to 5% of locations within
the field. Classifiable locations are randomly selected un-
til this ratio is achieved. The selection of these locations is
randomly permuted for each experimental trial.

Figure 4 shows the location estimate accuracy versus elapsed
simulation time for both the MCL technique (best among
the three tested in Figure 1) and ABL. Error is defined as
the distance between the estimated location relative to the
actual one, normalized by the transmission radius. The re-
sults show that ABL outperform MCL. In other simulations
we found the accuracy of ABL to be insensitive to the bea-
con ratio but sensitive to the density of discernibly unique
locations in the field.



4. RELATED WORK
There is little work found in the literature associated with

localization in mobile sensor networks. In [5], a beacon-
based scheme is presented that modifies typical monte carlo
localization (MCL) to use range free beaconing and to meet
the resource constraints of typical sensor networks. In [15],
the authors apply MCL to an approach that combines both
ranging and range free forms of exchanges between nodes.
In [16], the authors present an extension to support mobility
using radio-interferometry. Mobility is discussed as a way
to assist in the localization of static nodes in [13] [14].

Prior examples exist of machine learning been employed
to assist in other aspects of the localization problem other
than the one considered in ABL. In [17], a kernel based
machine learning technique is applied to reduce the inac-
curacies in range estimates in sensor networks, a building
block of many localization schemes. [18] proposes Bayesian
learning to build probabilistic localization filters used to lo-
calize robots, and uses both an awareness of the motion of
the robot and the environment (i.e., such as doorways in
buildings).

Finally, much can be learnt from the field of robotics when
designing localization methods for mobile resource and size-
constrained sensor networks. However, common assump-
tions about the environment (e.g., known layouts, artificial
markers) and equipment (visual recognition systems [19][22],
laser range finders) found in the robotics literature limits the
direct application of these solutions.

5. CONCLUSION
In this paper, we presented ABL a novel approach for

localizing mobile sensors based on leveraging ambient envi-
ronmental sensor data. Sensed data is used to determine
location and to a degree comes for free as part of supporting
the sensing application. We presented some initial results
that we intend to expand upon as part of future work. The
results from experimentation and simulation show that the
approach has promise. We are in the process of modeling
a large mobile sensor network that considers the density
functions for mobile sensors and their stochastic arrival pro-
cesses.
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