Smartphone Sensing

A Thesis
Submitted to the Faculty
in partial fulfillment of the requirements for the
degree of
Doctor of Philosophy
in
Computer Science

by

Emiliano Miluzzo

DARTMOUTH COLLEGE
Hanover, New Hampshire

June, 2011

Examining Committee:

(chair) Andrew T. Campbell, Ph.D.

Tanzeem Choudhury, Ph.D.

Lorenzo Torresani, Ph.D.

Matt Welsh, Ph.D.

Brian W. Pogue, Ph.D.
Dean of Graduate Studies

© 2011

Emiliano Miluzzo
All Rights Reserved

Abstract

The increasing popularity of smartphones with their emleedsbnsing capability and the availabil-
ity of new application distribution channels, such as, tipplé AppStore and the Google Android
Market, is giving researchers a unigue opportunity to depiobile sensing applications at unprece-
dented scale and collect sensor data way beyond the boegsddriraditional small-scale research
laboratory deployments. This thesis makes a number of ibatibns to smartphone sensing by
introducing new sensing models, algorithms, applicatiansl systems.

First, we propose CenceMe, the first large-scale persorthlsaaial sensing application for
smartphones, which allows users to share their real-tirapsiag presence” (i.e., activity and con-
text) with friends using the phone, web, and social netwdidsqi.e., Facebook, Myspace, Twit-
ter). CenceMe exploits the smartphone’s onboard sensias gecelerometer, microphone, GPS,
Bluetooth, WiFi, camera) and lightweight, efficient maahlearning algorithms on the phone and
backend servers to automatically infer people’s activitgl aocial context (e.g., having a conversa-
tion, in a meeting, at a party). The development, deploymemd evaluation of CenceMe opened
up new problems also studied in this dissertation.

Sensing with smartphones presents several technicatolgal that need to be surmounted; for
example, the smartphone’s sensing context (i.e., theiposif the phone relative to the event be-
ing sensed varies over time) and limited computationaluess present important challenges that
limit the inference accuracy using phones. To address tbleskenges, we propose an “evolve-
pool-collaborate” model that allows smartphones to autmally adapt to new environments and
conduct collaborative sensing among co-located phoneg#tiresin increased robustness and clas-
sification accuracy of smartphone sensing in the wild. Wetbie system, Darwin Phones.

The final contribution of this dissertation explores a nevbiteosensing application called VibN,
which continuously runs on smartphones allowing usersdwlive feeds associated with hotspots
in a city; that is, what is going on at different locationse thumber of people and demographics,
and the context of a particular place. VibN addresses a nuwofberitical problems to the suc-
cess of smartphone sensing, such as, running continuossgeaigorithms on resource limited
smartphones, resolving privacy issues, and developinghnsosalata validation methodology for
applications released via the app stores (i.e., validatémgor data and identifying patterns without
any notion of ground truth evidence). Such a methodologyusial to the large-scale adoption of
smartphone sensing in the future.

Smartphone sensing is an emerging field that requires signifadvances in mobile computing,
machine learning, and systems design. It is an excitingafnessearch that is cross-disciplinary and
likely to touch on many application areas and scientific dosmanoving forward. The work pre-
sented in this dissertation identifies new problems andisaokithat help advance our understanding
in what is now a fast-moving area of research.

Acknowledgments

First of all, | would like to thank my adviser Professor Anar€é. Campbell for his support, the time
he spent to advice, guide, and teach me how to pursue antbitieas and transform them in the
work of this dissertation. He educated me to the importafiexercising intellectual and technical
curiosity as the only means to achieve academic impact. Biertging ideas and assumptions, he
fostered a sense of criticism and the need to think outsideedbox, necessary characteristics to be
aresearcher.

Professor Tanzeem Choudhury added significant value to niy with her machine learning
experience. Conversations with her helped shape my idehtoak them to the level required for
top-tier conference publications.

| am grateful to Professor Lorenzo Torresani for his adviseseame of my research ideas, in
particular for his machine learning course, which intrasiline to the intricacies of this fascinating
topic.

| would like to thank Nicholas Lane for his feedback and dotlieation in many of my research
projects.

| have had the pleasure to work with many other great peoplewtvas at Columbia Univer-
sity, Dartmouth College, and Nokia Research. They are G&wup Ahn, Shane Eisenman, Chieh-
Yih Wan, Kristof Fodor, Mirco Musolesi, Ronald Petersorgrtg Lu, James Oakley, Xiao Zheng,
Cory Cornelius, Ashwin Ramaswamy, Zhigang Liu, Tianyu Wavichela Papandrea, Andy Sar-
roff, Shaohan Hu.

I must express my tremendous appreciation to my dear paedtamily members, who always
supported me from very far away while suffering for the lomgfahce that separates us. Thank you
for your love and support.

Finally, | owe immense gratitude to my wife, for her endute put up with my often hectic
life style during my Ph.D. | do not think | could have made itlvdut her. Her presence and strength
gave me the drive to accomplish this. Thank you for evergthin

Dedication

To my wife Giulia, for her love, continuous support and ermegement.

Contents

1 Introduction 1
1.1 Overview e e

1.1.1 Smartphone Sensing e 2

1.1.2 Problem Statement 4

1.2 ThesisOutline. e 7

1.2.1 CenceMe: A Mobile Sensing Application to Infer and i8Rersonal Sens-
iNgPresence e

1.2.2 Darwin Phones: A Distributed and Collaborative lafere Framework for
Smartphone Sensing Support e

1.2.3 VibN: A Large-Scale Mobile Sensing Application fordpée and Place

Characterization
1.3 Thesis Contribution 9
2 A Mobile Sensing Application to Infer and Share Personal Sesing Presence 12
2.1 Introduction e 12
2.2 DesignConsiderations e e 14
2.2.1 Mobile Phone Limitations 14
2.2.2 Architectural Designlssues 0. 15
2.3 CenceMe Implementation. e 17
2.3.1 Phone Software 7
2.3.2 Backend Software 0 2
2.4 CenceMe Classifiers 21
2.4.1 PhoneClassifiers 21
242 BackendClassifiers 24
2.5 System Performance e e 27
2.5.1 Classifiers Performance, ... 27
252 PowerBenchmarks 13
25.3 Memoryand CPUBenchmarks 3 3
2.6 The iPhone as a Mobile Platform for People-Centric $gn8pplications 33
2.6.1 Comparison of Mobile Sensing Platforms: iPhone, NabMdSP 34
2.6.2 Programmability Characteristics of the iPhone 34

2.6.3 Performance Evaluation 0. 36

2.7 UserStudy e 9
2.8 CenceMe Large-Scale Deployment cau... 42
29 IPhoneCenceMe 43
29.1 Client
2.9.2 Cloud
2.10 Large Scale Deployment: LessonsLearnt 44
211 Related Work e 48
212 SUMMAIY . . . o e e e e e e e e e e e e e 9

A Distributed and Collaborative Inference Framework for Smartphone Sensing Sup-

port 50
3.1 Introduction e 50
3.2 DarwinDesign e 53
3.2.1 DesignConsiderations 53
3.2.2 DarwinOperations i e 54
3.2.3 Speaker RecognitionUseCase 55
3.2.4 Classifier Evolution 57
3.25 ModelPooling e
3.2.6 Collaborative Inference L. 60
3.3 Discoveringthe SensingContext ciee ... 64
3.3.1 PhoneSensingContext 65
3.3.2 DiscoveryDesign. 67
3.3.3 Discovery Implementation 69
3.3.4 Preliminary Discovery Evaluation 70
3.3.5 Discovery Future Work 71
3.4 Privacyand Trust e . 71
3.5 System Performance e e 72
3.5.1 Phonelmplementation 72
3.5.2 ExperimentalResults 73
3.5.3 Impact of the Number of Mobile Phones 80
3.5.4 Timeand Energy Measurements 81
3.6 DemoApplications e 83
3.6.1 \Virtual Square Application 83
3.6.2 Place Discovery Application 83
3.6.3 Friend Tagging Application 85
3.7 RelatedWork 86
3.8 Summary ... e e

vi

4 A Large-Scale Mobile Sensing Application for People and Rlce Characterization

4.1 Introduction e e e e e, 89
4.2 Design e e e 29
421 PhoneClient e 92
422 Backend. 98
4.3 Data Validation Methodology, 100
4.3.1 Future Work for Data Validation Methodology 102
4.4 Security, Privacy,and Trust e 106
45 VibN System Evaluation, 106
45.1 SystemPerformance 0. 106
4.5.2 Personal PointsofInterest 108
453 BackendClustering e 109
4.5.4 VibN Usage Characterization 110
455 DataValidation 112
456 UserFeedback 411
4.6 RelatedWork e 115
4.7 SUMMANY . . o e e e e e e e e 511
5 Conclusion 117
5.1 Summary e e 711
5.2 EndNote e 811
A Refereed Publications as a Ph.D. Candidate 120
A.1 Journal Publications e 120
A.2 Magazine Publications e 121
A.3 Conference and Workshop Publications 121

Vii

List of Figures

2.1 Architecture of the CenceMe phone software. 17
2.2 ClickStatusonthe NokiaN95. c.... 19
2.3 Software architecture of the CenceMe backend. 20
24 DFTofaudiosamples. 21
2.5 Discriminant analysis clustering. The dashed line fsreined by the discriminant
analysis algorithm and represents the threshold betwéléngand not talking. . . 22

2.6 Accelerometer data collected by the N95 on board aaneleter when the person
carrying the phone performs different activities: sittistganding, walking, and run-

NING. . . . o e e e e e 23
2.7 Activity classification vs. body position.0 0L, 28
2.8 Conversation classifier performance. 29
2.9 Details of the power consumption during a sampling/aglmterval. 31
2.10 The tradeoff between energy consumption and dateclaterCenceMe. 32

2.11 FFT computation time as a function of (a) the number $zsxp time while varying

the FFT bin size (as shown in the legend) and (b) the FFT bewsgfile varying the

number of samples intime (as showninthelegend). 36
2.12 (a) Battery duration with and without CenceMe runningjlesithe iPhone screen

saver is set to off; localization accuracy for eight diffgréocations in the Dart-

mouth campus of (b) the old iPhone (no GPS), and (c) the iPR@Gngvith GPS). . 37
2.13 CenceMe user study statistics. e 40
2.14 The teploy-use-refifemodel adopted for the CenceMe large-scale deployment. . 44

3.1 Darwin’s steps: (a) evolution, (b) pooling and (c) cotieative inference. They
represent Darwin’s novel evolve-pool-collaborate modeplemented on mobile
phones. e 51

3.2 Examples of application domains Darwin can be appliedaaial context (e.g., in
conversation, in a meeting) and ambient audio fingerpgntising the microphone;
pollution monitoring leveraging the phone’s pollution sen radio fingerprinting
for localization with GPS, WiFi and cellular triangulatioand applications exploit-
ingthe phone’scamera. 53

3.3 Darwin’s (a) Training and (b) Evolution steps. 56

viii

3.4 Discovery'sinference Steps. e e 67
3.5 (a) FFT power of an audio clip when the phone is inside tuket; (b) FFT power
of an audio clip when the phone is outside the pocket; (c) €otithe number of
times the FFT power exceeds a threshblidr both the in-pocket and out-of-pocket
CASES. . . v i e e 68
3.6 Accuracy, without evolution, for three speakers wheiking along a busy road
without classifier evolution and having trained the clasatfon models for indoors

oNly. . . . e 72
3.7 Evolution sessions count over time in the indoor scerfarispeaker 8. 73
3.8 Size of the data set recruited during the evolution piraee restaurant scenario. . 74
3.9 Server training computation time as a function of thining data size. The server

hasa24GHzcpuand 4GB of RAM. 4 7
3.10 Classifier accuracy and the amount of needed trainitagilan outdoor scenario. . 75

3.11 Precision for speaker 8 basic inference when speakerspeaking in an indoor
quietsetting. e e e e O5

3.12 Normalized true positive-false positive differenaveen speaker 8 and all the
other speakers when speaker 8 is speaking. The closer thmliwed difference to

1, the larger is the true positives compared to false pesitiv. 76
3.13 Mean recall, precision, and accuracy in an indoor qergironment with collabo-

rative inference for the eight speakers. 76
3.14 Classification difference between speaker 8 and ther sgfeakers without Darwin. 77
3.15 Classification difference between speaker 8 and ther efeakers with Darwin. . . 77
3.16 Precision for speaker 4 on different phones in a noistaoeant environment with-

out collaborative inference. L 78

3.17 Recall, precision, and accuracy in a noisy restauréhtiarwin for three speakers. 79
3.18 Recall, precision, and accuracy for three speakerkingabn a sidewalk along a

busyroad. 80
3.19 Accuracy in a noisy restaurant when an increasing nuofiEhones participate to

Darwin. e 81
3.20 Accuracy in a quiet indoor setting when an increasinglyer of phones participate

toDarwin. L e 81

3.21 Power, CPU load, and memory usage of the N97 when ruirangin. The Darwin
routines have been made run sequentially and the operdtangsbeen segmented
as reported in the following labels: (A) One sec audio samgpl{B) Silence sup-
pression; (C) MFCC extraction; (D) Voicing; (E) Local inégrce; (F) MFCC trans-
mission to the server; (G) Model reception from the servdj;NMlodel transmission
to neighbors; (1) Local inference broadcast; (L) Local nefece reception. 84
3.22 Battery lifetime Vs inference responsiveness. 84

3.23 Virtual Square, an augmented reality application aNI97 with the support of
Darwin. e 85

4.1 CenceMe inference labels generated over a month adbosshfects in Hanover,

New Hampshire. e e 90
4.2 a) Architecture of the iOS and Android implementationgle phone; b) architec-

ture of the VibN backend. L L 91
4.3 VibN personal view and personal details view on the iRhamd the NexusOne. . . 94
4.4 VibN live and historical views on the iPhone and the N&wes. 96
4.5 One of the LPOIl detailsontheiPhone. 97
4.6 Sparse ground truth and inferred labels over time. Ithinige possible to build

models to predict inferred labels from sparse ground truémes. 102

4.7 Inferred labels validation flow involving external soeis of information such as
public points of interest, expected behavior public databand web mining tech-

NIQUES. o e e e e e e e e 103
4.8 VibN inferred labels distribution from the web docunwefur physical activity and
audio context forthe gymecategory. e 104
4.9 VibN inferred labels distribution from the web docunwefur physical activity and
audio context for the subway category. 105
4.10 iPhone 4 and Nexus One battery duration when runnindyl itrd amount of data
received and transmitted during VibN operations. 107
4.11 CPU usage and free memory for VibN runningoniOSs. 107
4.12 Personal points of interest for an indoor location withiPhone 4. The dampenlng
regionradiusis: a) 1lmandb)27m. 108
4.13 Spurious clusters caused by continuous location gddad. 109

4.14 Backend clustering algorithm performance: a) rawtlonadata from seven differ-
ent places; b) result of the clustering algorithm with k=t &ps=0.1; c) result of
the clustering algorithm with k=1 and eps=0.02; d) resuthefclustering algorithm

withk=5and eps=0.002 i e 110
4.15 VibN users’ age distribution. Lo 110
4.16 VibN users’ gender distribution. 0. 111
4.17 Single Vs not single breakdown distribution of VibNrsse. 111
4.18 Fraction of Android VSiOS users. e 112
4.19 VibN daily usage pattern. e 112
4.20 VibN weekly usage pattern. e 113
4.21 Localization error compared to the real indoor pizatangrant location. 113
4.22 Keyword count extracted from the microblog messagstefddoy different people

from withinthe restaurant. 114
4.23 Euclidean distance between feature vectors for diffeactivities, i.e., between sit-

ting/walkingandrunning. e 114

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.2

4.1
4.2
4.3

CenceMe activity classifier confusion matrix 27
CenceMe conversation classifier confusion matrix 27
CenceMe mobility mode classifier confusion matrix 28
RAM and CPU usage for the CenceMe N95¢client 33
Mobile devices specs comparison. e 35
Localization accuracy for different places in the Dantith Campus - LegendC.S.

= Cellular Signal;A = Old iPhone accuracy (mB = iPhone 3G accuracy (m§
= Garmin GPS accuracy (m = Old iPhone-Garmin GPS localization difference
(m); E = iPhone 3G-Garmin GPS localization difference(m) 38

Sensing context classification results using only tteeaphone. Explanation: when
a result is reported in X/Y form, X refers to the pocketcase, and Y refers to the
out of pocketcase. If the column reports only one value, it refers to theraye
result for bothin andout of pocket. LegendA = GMM; B = SVM; C = GMM
training indoor and evaluating indoor onl; = GMM training outdoor and evalu-
ating outdoor onlyE = SVM training indoor and evaluating indoor only;= SVM
training outdoor and evaluating indoor on{y;= GMM training using only MFCC;

H =SVMtrainingusingonly MFCC. 07
Average running time for processing 1 sec audio clipdisg and transmitting the
data. e 82

Examples of microblog posts and sensor data from the Ame £enceMe data set. 100
Inferred states, based upon combinations of sensinglities. 101
Fraction of users allowing their data to be used for rebepurposes. 111

Xi

List of Algorithms

1 Pseudocode for the Darwin classifier evolution algorithm running on nodei. . 59
2 Pseudocode for the Darwin local inference algorithm runnig on nodei using
K pooled models. The numberK is determined by the number of detected
neighbors. The locally inferred speaker ID corresponds to he index of the
model best fitted by the audio chunk following the windowing mlicy. 63
3 Pseudocode for the localization engine duty-cyclingmanag 92

Xii

Chapter 1

Introduction

1.1 Overview

Smartphones are becoming more and more central to our eyeliyds. While early mobile phones
were designed to primarily support voice communicatiocht®logical advances helped reduce the
“gap” between what we consider conventional phones and aterg As this technological divide
further diminished, a new paradigm is fast emerging: peapebeginning to replace their personal
computers with smartphones. The mobility and power affodole smartphones allow users to in-
terface more directly and continuously with them more thasr before. Smartphones represent the
first truly ubiquitous mobile computing device. A criticamponent that opens up smartphones to
new advances across a wide spectrum of applications dornsdimsnded on the embedded sensors
in these devices. Sensor enabled smartphones are set tadeuen more central to people’s lives
as they become intertwined with existing applications saglsocial networks and new emerging
domains such as green applications, recreational sptotsglgenvironmental monitoring, personal
and community healthcare, sensor augmented gaming, Migtality, and smart transportation sys-
tems. As such, the global density of smartphones will prgbund breaking ways to characterize
people, communities, and the places people live in as nessilge before. These advances are en-
abled not only by embedded sensing, but by a number of othtrfaas well, including, increased
battery capacity, communications and computational mressu(CPU, RAM), and new large-scale
application distribution channels — also called app st¢sesh as, Apple App Store, Google An-
droid Market, Nokia Ovi Store). By mining large scale seggiiata sets from applications deployed
on smartphones through the app stores and using machiminigaechniques to analyze the data,
it is now possible to discover patterns and details abouvithagals and ensembles of people not
possible before [1, 2, 3]. As a result, we can exploit raaktiand historical sensing data from
communities of people, making inferences at scale, andnath@ the design of new people-centric
sensing systems across many diverse application domaibs§47, 8, 9].

In this dissertation, we propose a number of models, alynst applications, and systems that
advancesmartphone sensingr mobile phone sensing [10]. By relying on an ever expandieig
of embedded smartphone sensors (e.g., accelerometenptmicre, digital compass, GPS, gyro-

scope, camera, light sensor) rather than specialized rsefidg 12], and exploiting the ubiquity of
smartphone usage, it is possible to characterize peoplei®oosmos, i.e., activity, context, and
surroundings characteristics at very fine grained levadt) in space and time. We calensing
presencd13, 14] the result of inferring a personal status (e.g. kimgj, jogging, meeting friends),
disposition (e.g., happy, sad, doing OK), habits (e.ghagym, coffee shop today, at work) and sur-
roundings (e.g., hoisy, music, lots of people around) usingrtphone’s sensors. We first highlight
the challenges of developing inference and machine legmigorithms for a continuous sensing
application called CenceMe [13] deployed on off-the-skheifirtphones. We inject sensing presence
into popular social networking applications such as FackpblySpace, and Twitter to foster new
levels of “connection” and implicit communication (albgibn-verbal) between friends in social
networks [13, 14]. Next, we propose a novel distributed cotimg and collaborative framework to
deal with the uncertainty of running inference on smartsoat scale in the wild [15]. We propose
a way to validate inference labels collected from the wildevehground evidence is unavailable
[16]. Such a validation methodology is a key step to ensultiag the data collected from the wild
is reliable and thrustworthy.

1.1.1 Smartphone Sensing

Since Mark Weiser’s vision over two decades ago [17] of hoswtlerld would change with the in-
troduction of ubiquitous computing, there has been sigmitiprogress towards his vision. Context
aware computing and smart wearables [18, 19, 20, 21, 22}|egs sensor networks [23, 24, 25], ac-
tivity recognition using wearables [11, 26, 27, 28, 29, 20jd Human-Computer Interaction (HCI)
[31, 32, 33, 34] are just examples of technologies that hpua sff the ubiquitous computing idea.

The Smartphone: a Computer with Sensors.Recent technology advances and miniaturiza-
tion have accelerated the convergence between mobile plammepowerful computers facilitating
the development of the smartphone technology. Smartphmoraputation and storage capabilities
are ever growing while integrating a suite of sensors (&coeteter, microphone, GPS, WiFi, dig-
ital compass, gyroscope, and, in the future, air quality @rhmnical sensors [35]). Although many
of these sensors have been mainly introduced to drive tHealaser interface, by taking advantage
of smartphones’ computational power and sensing cagebijliand their tight coupling with users’
daily lives, smartphones can become very compelling plaigoto replace the custom designed
sensors that researchers have previously adopted to igeaggers’ activities and context [11, 12].
This new approach, proposed in the CenceMe project [13,vil4ére smartphone’s onboard sen-
sors data is interpreted through lightweight machine legralgorithms running on the smartphone
itself, is giving rise to a new area of research cakedartphone sensin0]. The use of these
devices for researchers and developers is also facilitagetthe availability of free downloadable
software development kits to program them. However, thgnammability of these platforms is
not the only quality that makes smartphones compelling.

The App Stores. The real game changer is the introduction of large scaleiGgtjun dis-
tribution systems — or app stores — (such as, Apple App SBosgle Android Market, Nokia

Ovi), which, for the first time, allow researchers to exploesearch ideas beyond the boundary
of their laboratories, and to validate theories at a vergdascale. Sensor-enabled smartphones
are becoming a mainstream platform for researchers tootatieormation-rich data because these
devices allow the characterization of human activity andtext at unprecedented scale and in a
pervasive manner [36, 37, 38, 39]. Smartphone sensingtfes the growth of new classes of
applications in the social [14] and utility sphere [40, 4ddeen and environmental monitoring do-
mains [42, 43, 44, 35], healthcare [45, 46], augmentedtyegdir], smart transportation systems
[48, 49, 50], and virtual worlds [51, 52, 53].

Smartphone Sensing Today and Tomorrow. This dissertation contributes to spearheading
the emerging area of smartphone sensing, identifying sdntieeokey challenges and proposing
solutions in order to overcome them. Through large scaldicgtion deployments and one of the
first implementations of learning algorithms on off-thef§lsmartphones with CenceMe [13, 14],
we highlight some of the challenges in running mobile sepajpplications on smartphones. These
challenges span from smartphone programmaubility, to ritglihe need to preserve the phone user
experience, the need to achieve classifier accuracy in tldeawvil to mitigate the sensing context —
that is, the position of the phone carried by a user (e.ghérmpbcket, in the hand, inside a backpack,
on the hip, arm mounted, etc.) in relation to the event beamgead.

Early smartphones such as the Nokia N95 [54], equipped witklarometer and GPS, lacked
efficient software infrastructure to support mobile segsipplications. These limitations were
reflected in inefficient application programming interfad@PIs) to access some of the phone’s
components, such as the sensors. There were also limgdtommplementing efficient resource
management routines, i.e., turn the sensors off when nategeeMore recently, iOS, Android,
and MeeGo smartphone operating systems are much more supiatforms for mobile sensing
application programming. They provide a more complete B&Rds to access the low level com-
ponents of the phone operating system (OS) while taking radge of more powerful hardware
(CPU and RAM). However, in spite of the OS and hardware im@noents, there are still issues
that limit mobile sensing applications. Smartphone battapacity is still a bottleneck, reducing
the possibility to run continuous sensing applicationsoter issue is represented by unpredictable
or undesirable behavior for some of the sensors. Smartghsaesors have been mainly introduced
to enhance the user experience when interacting with thieeteve.g., flipping the user interface
from landscape to portrait mode with the accelerometer.tfisreason Apple iOS currently shuts
down the accelerometer when an application is pushed togtmaekground process since there is
no active user interface that needs the accelerometer gupploe consequence of this approach
is the impossibility to rely on a continuous accelerometadtream, which is the foundation for
reliable activity inference. Other limitations for iOSrfexample, derive from the limited run-time
control for the developer of the localization engine, a riotssly power hungry sensor. Besides
software impediments, there are other factors that nee@ taken into consideration in order to
make a mobile sensing application successful. These aresiselated to the sensor data interpre-
tation, inference label accuracy and validation. When ahimaclearning algorithm is deployed to

run in the wild without supervision, the lack of ground trighidence calls for mechanisms that
associate, for example, a validation weight to the infeedabels in order to provide a certain confi-
dence about the trustworthiness of the inferred labelso,Alle variation of the smartphone sensing
context degrades the quality of the inference (this is tlee dar mobile sensing applications ex-
ploiting the microphone for audio sensing for example, Whenegatively impacted by the phone
being in a user’s pocket or backpack). There is a need tomasigrence schemes that are reliable
and boost the inference results of applications runnindvénwvtild. Although they have increas-
ingly powerful hardware platforms, smartphones still hBr@tations in running computationally
intensive algorithms, such as the learning phase of a madbarning technique. External, more
powerful support, e.g., cloud computing, could be exptbitemitigate this problem.

Smartphone Sensing Application Requirements.When designing mobile sensing applica-
tions it is paramount to make sure the aforementioned isategroperly addressed. However,
this can be done successfully only by meeting the tradedfirele important and contrasting met-
rics: inference fidelityinference responsivenesandresource usagelnference fidelity reflects the
accuracy of the inferred labels. Inference responsiverefess to the time needed to compute the
inference labels, while resource usage is a parameteruhatifjes the impact of the mobile sensing
application on the smartphone CPU, RAM, and battery lifecd®¢ work proposes early solutions
to accommodate this tradeoff in the context of location artividy recognition [55, 56, 57, 58, 59].

Privacy and Trust. Privacy and security are very sensitive issues for contiawand pervasive
sensing applications that infer user’s activity, contextd surrounding conditions. Solutions to
protect users’ privacy for smartphone sensing applicatioave been proposed [60, 61, 62, 63].
There is also a need to take into account the risk of malicitmygnloaded applications that hack
into user’s data stored on the device [64].

Opportunistic Sensing. The work in this dissertation is founded on an opportunisénsing
paradigm [4, 6], where the user is not an active participatitaosensing process (i.e., actively taking
a sensor reading). In this case, sensing happens autoliyatine continuously when the system
determines that the sensing context is right for sensing.opportunistic sensing approach can be
differentiated by a participatory sensing system, whested the user is asked to participate in the
sensing process by actively triggering or reporting thesgsereadings from the mobile devices [7].

1.1.2 Problem Statement

A major research focus of the pervasive, ubiquitous comgutind sensor networking community
is sensing user's activity, context, and surroundings, eansing presence [13], to realize mobile
sensing applications in different domains, such as soef@barking, gaming, green transportation,
and health care.

Lack of Scalability Using Wearables. The main challenge to the success of these appli-
cations is the lack of scalability of any of the solutionsuiing the instrumentation of places
with ad-hoc sensors or customized wearables to sense astixdty, context, and the environment
[65, 66, 67, 68, 69, 70, 12, 27, 11, 29]. Both large monetast tw deploy and maintain infras-

tructures and the need for incentives to motivate peoplegarwpecialized sensors, along with the
possibility of realizing only small-scale deploymentsyé&een the main barriers to the popularity
of pervasive and ubiquitous computing applications andesys at scale. The increasing popular-
ity of smartphones and their computational capabilitig@@with the array of sensors mounted on
them, have become a game changer for both researchers dicdi@@pdevelopers: there is no need
anymore to rely on custom infrastructures to infer usergtext and activities because of the pos-
sibility to exploit the pervasiveness of smartphones wtaldng advantage of their computational
and sensing capabilities.

Our work is one of the first approaches that identifies the gthane as the fulcrum of the mo-
bile computing revolution and sensing presence inferevMado so by bringing intelligence to the
phone and inferring sensing presence on the move from theedewnboard sensors. While in some
early work researchers [71, 72] and industry players [78lized the centrality of smartphones to
deliver context-aware applications, they either reliedody-worn sensors interfacing with mobile
phones [71] or on a set of logic rules that combined the inparhfthe phone’s GPS, phone usage
patterns (idle/active, battery charging, frequency of enawad received calls, SMS usage), and Blue-
tooth proximity detection to identify the user’s contex®2].7For the first time, we bring intelligence
to off-the-shelf smartphones to compute a user’s sensiegepce going beyond simple heuristic
rule-based approaches and mere user-driven input. Weydeyaohine learning techniques on the
phone itself that derive the sensing presence automati@adl transparently to the user by sourcing
data from the smartphone’s onboard sensors, such as theraceeter, microphone, GPS, WiFi,
Bluetooth, gyroscope, and magnetometer.

Machine Learning Limitations on Smartphones. Many challenges arise from bringing ma-
chine learning to smartphones. Most of the known machinmileg algorithms to date have been
designed to run on powerful computers and do not adapt wedkiource constrained devices such as
smartphones. It is important to design mobile sensing egiidins for smartphones while meeting
the phone user experience requirements, e.g., the alulityake and receive calls, an acceptable
battery duration and the tradeoff between inference figdliference responsiveness, and phone
resource usage (where inference fidelity reflects the didabels accuracy. Inference responsive-
ness refers to the time needed to compute the inferences)atlelle resource usage is a parameter
that quantifies the impact of the mobile sensing applicatiorthe smartphone CPU, RAM, and
battery life). It is also necessary to identify new machie&rhing algorithms that are less resource
demanding and suitable for the limited resources availablemartphones. When analyzing sensor
data to infer a user’s sensing presence it is fundamentabteqi the privacy of the user. One way
to meet this requirement is to operate as much as possibleeasmartphone for feature extraction
without exposing the raw data to the external world, and camioating only the features or the
result of the inference to external entities. To reduce thgaict on the battery consumption, lo-
cal feature extraction and some on-the-phone data preegsow is also required to minimize the
amount of data to be sent to the servers. Running featuraotixin on the phone implies the need
to identify features that require low computation (compai®@ the complex features extracted on

server machines), yet are effective to produce accuratdéimatearning models. These observa-
tions, combined with the facts that battery capacity ineeda slower than smartphone computation
growth, and that wireless transmission is one of the maisesof battery drain, demand frame-
works that rely on split techniques that distribute andardfilocal (on the device) versus remote
(on the server) computation. For this reason, a split-leeehputation/classification approach is
needed, whereby part of the tasks — cheap in terms of conmutatcan run on the phone while
more resource-intensive routines — such as training aitepaigorithm — are offloaded to servers.
Our split-level computation approach differs from techugg that completely rely on the external
cloud computing support and envision only thin clients aaphone itself [74].

Mobility and Sensing Context. There are other challenges that need to be addressed irt@rder
build reliable smartphone sensing applications. One isdinging context problem, i.e., the position
of the phone carried by a person (e.g., in the pocket, in thd Haside a backpack, on the hip, arm
mounted, etc.) in relation to the event being sensed. Mdglfittnes carried by people may have
many different sensing contexts that limit the use of a sefi@oexample: a chemical sensor or the
microphone offer poor sensing quality when buried in a pgssbackpack. Another challenge is
the classification model scalability in the wild after it Haeen trained in a fully supervised manner
before the deployment. Regardless of the richness of thertgadata used to build a classification
model, in order to adjust to user behavior for best perfogeanning, classifiers might need to
be adapted once they are deployed. In order to reduce therbumdl application developers to
retrain classifiers in a supervised manner and on users¥alprtabels, in the Darwin Phones paper
[15] we propose the use of automatic classifier evolution Xplaiting semi-supervised learning
techniques. To reduce the impact of the sensing context eimtbrence accuracy we introduce
classifier cooperation across different co-located srhartps. Moreover, there is a need to preserve
the phone user experience. In order to achieve this goal.etwsnhartphones pool (or borrow)
classification models from surrounding smartphones or fiterbackend if the classifier is already
available. Thus, we reduce the impact on the smartphoneneeso (CPU, RAM, and battery) of a
mobile sensing application.

Need for Multi-Modality Sensing. While a multi-modality sensing approach has been demon-
strated to be helpful in different contexts [6, 27, 75, 76,7, 79], multi-modality sensing is often
necessary in mobile sensing applications to boost the haemasing presence inference accuracy
and to compensate for the lack of effectiveness of some ofe¢heors (due to the sensing context
problem for example). We show how this approach boosts th® presence inference accuracy
in CenceMe [14], Darwin Phones [15], and Discovery to infeneartphone sensing context [80].

Deployment at Scale. The application distribution system support in particuleug., Apple
App Store, Android Market, Nokia Ovi) is a game changer fa thsearch community, because
it enables the instant deployment of applications ontoiomd of smartphones and gives the op-
portunity to collect very large data sets from the wild asargeossible before. By mining rich,
large-scale data sets, researchers will be able to answel msearch questions. We are given the
opportunity to characterize spaces at a very fine grained, lethich is generally impossible without

burdensome subject polling. Such information may be uséfulexample, to help city managers
understand how people exploit urban spaces, resulting imaved urban planning. Alternatively,
physicians may learn the health behavior of a community aedthis information for community
health assessment and recommendations. Distributedrsaoesitoring and inference can expand
opportunities for automated personal information shaand for people behavior characterization.
However, when an application is deployed in the wild, thened inherent method for the developer
to verify whether inferences are meaningful and correct: ikstance, if a mobile device reports
that a user’s activity is walking, we lack ground truth toifyethat the inference is not the result of
a false positive misclassification. While erroneous cfacsgion may be tolerated in leisure appli-
cations, it may not be acceptable for more critical appilices, such as those that assess wellbeing
or health. We propose a sensor inference validation metbggdavhere we combine data from
multiple dimensions (microblog, GIS, public reports datsds) with different sensing modalities in
order to provide improved confidence about the inferreditabalected in the wild [16].

1.2 Thesis Outline

The proposed smartphone sensing system architecturesittatgs, and applications in this disser-
tation are rigorously evaluated using a combination of &tian, analysis, and experimentation.
Experimental research plays a key role in the work preseémlbuild small experimental smart-
phone sensing systems in the laboratory, study their behavithe wild, and apply our findings
toward the construction of larger and more scalable smanipisensing systems and applications.
By implementing smartphone sensing system architectalgstithms, and applications on off-the-
shelf smartphones and leveraging large scale applicaigiribdition channels such as the Apple
App Store and Google Android Market we discover and highlige challenges presented by real-
istic mobile sensing system deployments and propose sokitd address them.

An outline of our study follows.

1.2.1 CenceMe: A Mobile Sensing Application to Infer and Shee Personal Sensing
Presence

In Chapter 2 we present the design, implementation, evalyatnd user experiences of the CenceMe
application, which represents the first system that consbihe sensing presence inference using
off-the-shelf, sensor-enabled mobile phones with theisfaf this information through social net-
working applications such as Facebook, MySpace, and Twhtte discuss the system challenges
for the development of software on one of the earliest prognable smartphones, i.e., the Nokia
N95 mobile phone, and show the performance of the softwatheApple iPhone. We present the
design and tradeoffs of split-level classification, whgrpbrsonal sensing presence is derived from
classifiers which execute in part on the phones and in pah@hdckend servers to achieve scalable
inference. We report performance measurements that ¢herscthe computational requirements
of the software and the energy consumption of the CenceMaeblient. We validate the system

through a user study where 22 users used CenceMe contigumesla three-week period in a cam-
pus town. From this user study we learn how the system pesfamra production environment and
what uses people find for a personal sensing system. Smagplamd “app stores” are enabling
the instantaneous distribution of a wide variety of thiettg applications to a very large number of
users around the globe with the potential to collect rictgdescale data sets. This new era repre-
sents a game changer for our research community — one whiahengtill analyzing and exploiting.
We discuss our experiences in developing, distributing,sapporting the CenceMe deployment at
scale through the Apple App Store.

1.2.2 Darwin Phones: A Distributed and Collaborative Inference Framework for
Smartphone Sensing Support

In Chapter 3 we present Darwin, an enabling technology faargzthone sensing that combines
collaborative sensing and classification techniques teoreabout human behavior and context
on mobile phones. Darwin advances smartphone sensinggthittie deployment of efficient but
sophisticated machine learning techniques specificaljgded to run directly on sensor-enabled
smartphones. Darwin tackles three key sensing and inferehallenges that are barriers to the
mass-scale adoption of smartphone sensing applicationthe(human-burden of training classi-
fiers, (ii) the difficulty of performance reliability in diéfrent environments (e.g., indoor, outdoor),
and (iii) the need to scale to a large number of phones witlemgiardizing the “phone experience”
(e.g., usability and battery lifetime). Darwin is a collastive reasoning framework built on three
concepts: classifier/model evolution, model pooling, aalihborative inference. To the best of
our knowledge Darwin is the first system that applies digtald machine learning techniques and
collaborative inference concepts to mobile phones. Andtimovation is a technique to infer the
phone sensing context, that is, the position of the phorgedaby a person (e.g., in the pocket, in
the hand, inside a backpack, on the hip, arm mounted, ete)dtion to the event being sensed. We
implement the Darwin system on the Nokia N97 platform andlapBhone. While Darwin rep-
resents a general framework applicable to a wide varietyrafrging mobile sensing applications,
we implement a speaker recognition application to evaltreebenefits of Darwin. We show ex-
perimental results from eight users carrying Nokia N97sdardonstrate that Darwin improves the
reliability and scalability of the proof-of-concept speakecognition application without additional
burden to users.

1.2.3 VibN: A Large-Scale Mobile Sensing Application for Peple and Place Char-
acterization

In Chapter 4, we discuss a large-scale mobile sensing afiplicto characterize places and com-
munities. The increasing popularity of smartphones, as asthe growth of their distribution
channels, is giving researchers a unique opportunity: Hiéyato deploy mobile sensing appli-
cations at unprecedented scale and to collect data beyendotimdaries of a research lab. The

result is an invaluable source of information that, whenedirenables the analysis of personal and
inter-personal behavior, as well as user interaction witttes. We present VibN, a mobile sensing
application deployed in large scale through the Apple Apgré&Sand Android Market. VibN has
been built to determine the “whats going on” around the useaeal time by exploiting multiple
sensor feeds. The application allows its users to expleegibints of interest in the city by present-
ing real time hotspots from sensor data. Each hotspot iectaaized by a demographic breakdown
of inhabitants and a list of short audio clips. The audiosiugment traditional microblogging
methods by allowing users to automatically and manuallyigeorich audio data about their loca-
tions. VibN also allows users to browse historical pointsndérest and view how locations in a
city evolve over time. Additionally, VibN automatically tiegmines users’ personal points of inter-
est, which are a means for building a user’s breadcrumb dibilgcations where they have spent
significant amounts of time. We present the design, evalnatind results from the large scale
deployment of VibN through the popular Apple App Store andifoid Market. We also discuss a
validation methodology for sensed data gathered in sirtdlge scale deployments, where ground
truth evidence is unavailable.

1.3 Thesis Contribution

Herein, we make several broad contributions to the smanipkensing field, as summarized in the
following.

1. The work in this dissertation contributes to spearhapdli® emerging area of smartphone
sensing. In Chapter 2 we go beyond the need to employ smaraklea and custom-designed
sensors for people’s activity and context recognition 18,20, 21, 22, 11, 26, 27, 28, 29, 30]
and discuss how we bring, for the first time, intelligence ffetlve-shelf smartphones to in-
fer a person’s sensing presence and their microcosmosgthraseries of machine learning
techniques running on the smartphone itself. We show hownfdement lightweight, yet
effective, machine learning algorithms that can operat@ emartphone by relying on the
cloud computing support, according to what we call the dpliel computation/classification
approach, to improve the resource efficiency of a learnimfprtiggue on the smartphone.
We carry out one of the first large-scale smartphone sensiag siudies by deploying the
CenceMe application through the Apple App Store, overcgnaimumber of technical chal-
lenges to run a continuous sensing system on the phone arbbpétto a production level
system used simultaneously by thousands of users. We etipeseany challenges aris-
ing from running mobile sensing applications on smartpkpmanging from the need of
efficient duty-cycling sensing and inference techniquesprivacy issues, and the impor-
tance of robust and resilient machine learning classifiersope with sensing context and
different individual user behavior. We also discuss theegigmces in developing, distribut-
ing, and supporting the CenceMe deployment at scale thrthug#\pple App Store. The
CenceMe publications [13, 14] have been widely cited as sa&nwork in the smartphone

9

sensing space by researchers studying privacy and seffiitg1, 82], energy efficient sens-
ing and inference algorithm modeling [55, 56, 58, 59, 83, 8ddbile sensing applications
[40, 41, 42, 48, 50, 85, 34], inference engine toolbox [86¢haectures for mobile social
applications [87, 88], middleware [89], and social studgsy.

. The CenceMe deployments [13, 14] highlight many issuagipl) against the feasibility of
smartphone sensing applications at scale. Some of the fampdactors that limit the perfor-
mance of a mobile sensing application are the phone sensinigxt, the lack of generality of
classification models at the time of training, the need tegmee the phone user experience,
and mobility. In Chapter 3 we present Darwin Phones [15],clwhitroduces a collabora-
tive reasoning framework built on three conceptisissifier model evolutignmodel pooling
andcollaborative inferenceWith its evolve-pool-collaboratenodel, Darwin is the first col-
laborative framework introduced to support mobile sensipplications at scale. Automatic
classification model evolution using semi-supervisednagkes is introduced to tune a clas-
sification model to users with different habits and contéés the ones captured in the data
used for training the initial model. Classification modebfiog meets the requirement of
preserving the phone user experience and it allows to perfioference quickly during the
short rendezvous time induced by mobility. Mobile phonesehthe opportunity, when pos-
sible, to pool classification models from co-located phomegom the backend in order to
save those resources (RAM, CPU, battery) that otherwisédimiheavily employed to train
a classification model from scratch. Finally, mobile phooegperate in the inference phase
to achieve higher classification confidence. Darwin is basethe idea that multiple phones
classifying an event and sharing their local estimate atfmuevent can lead to better global
classification results. A technique to infer the phone sgnsontext is proposed.

. Mobile social applications (e.g., Loopt, Foursquareyjew systems (e.g., Yelp), and micro-
blogging services (e.g., Twitter) are gaining popularithe goal of these applications is to
instantaneously connect people and provide detailedrirdtion about places (i.e., points of
interest) and people at any time. However, a drawback oktheplications is that the in-
formation provided might change at a slow time scale andetbez become stale quickly.
In Chapter 4 we present VibN, a new mobile sensing applinatiat supports live points of
interest of a city. VibN has been released at scale througi\fiple App Store and Google
Android Market. VibN allows the user to view live feeds adated with the hotspots in a
city — i.e., what is going on at different locations, the n@nbf people and demographics
(i.e., sex, age, marital status) and the context of the glacg, if it is a club, then what kind
of music is being played). The VibN project is addressing aiper of problems related to
capturing and distributing live points of interest, such masning continuous sensing algo-
rithms on resource limited smartphones, studying theat@n between mobile devices and
cloud servers, resolving privacy issues, and developingnasensor data validation method-
ology for applications released via app stores. This metlogy is needed to validate the

10

inferred labels and identify patterns without any notiofgund truth evidence. Such a
methodology is crucial to verifying the reliability of infieed labels collected from large scale
deployments.

We believe that CenceMe, Darwin, and VibN significantly atbeathe understanding of smart-
phone sensing by proposing some early solutions to solvehthllenges in this new space and by
opening up new research directions.

11

Chapter 2

A Mobile Sensing Application to Infer and Share
Personal Sensing Presence

2.1 Introduction

One of the most common text messages people send each athgrisd'where r u?” followed by
“what u doing?”. With the advent of powerful and programneabiobile phones, most of which
include a variety of sensing components (e.g., acceleensiggPS, proximity sensors, microphone,
camera, etc.) there is a new way to answer these questiomssémce, mobile phones can create
mobile sensor networks capable of sensing informationighiabportant to people, namely, where
are people and what are they doing?

The sensing of people is driving a new application domaihdbas beyond the sensor networks
community’s existing focus on environmental and infrastiiee monitoring, where people are now
the carriers of sensing devices, and the sources and corswigensed events. The expanding
sensing capabilities of mobile phones (e.g., Nokia N95 appldiPhone) combined with the recent
interest by the mobile phone vendors and cellular industigpien programming environments and
platforms, typified by the recent release of the Androidfptat [91] and the Apple iPhone SDK
[92], is accelerating the development of new people-cestnsing applications and systems [5].

In this Chapter, we present the design, implementatioruatian, and user experiences of the
CenceMe application [13], a new people-centric sensindiagijpn. CenceMe exploits off-the-
shelf sensor-enabled mobile phones to automatically pdeple’s sensing presence (e.g., dancing
at a party with friends) and then shares this presence thrsagial network portals such as Face-
book. We evaluate a number of important system performasstes and present the results from a
user study based on an experiment conducted over a thrdepgeged in a campus town. The user
study included 22 users consisting of undergraduatespgtas, and faculty at Dartmouth College.

We discuss results, experiences, and lessons learnt fidefiioyment of CenceMe on off-the-
shelf mobile phones. These phones, while fairly powerfuhpoters, present a number of limita-
tions in supporting the demands of a continuous personalrgapplication such as CenceMe. We
implement CenceMe on the Nokia N95 phones. Although the N@btop-end device with a great

12

deal of computation capability, the Symbian operatingesysand Java Micro Edition (JME) virtual
machine which runs on top of the N95 are rather limiting duth&fact that they have both been
designed to use small amounts of memory and computatios@lirees. Additional implementation
challenges arise from the fact that manufacturers and tguermit the programmability of mo-
bile phones to preserve the closed nature of their devicg®parational networks. For this reason
appropriate certificates purchased from a Certificate Aitthare needed, yet are not sufficient for
full deployment of an application such as CenceMe. We shevirtideoffs and discuss the difficul-
ties in implementing an always-on sensing application @enSimbian/JME platform which more
generally is designed to accommodate simple applicatiocls as gaming and calendar plugins.
Contributions of our work include:

e The design, implementation, and evaluation of a fully fioral personal mobile sensor sys-
tem using an unmodified mobile phone platform.

e The design of lightweight classifiers, running on mobile pé® which realize a split-level
classification paradigm. We show they have a limited impadhe phone’s functionality.

e Measurements of the RAM, CPU, and energy performance ofaissifiers and the CenceMe
software suite as a whole, showing the tradeoff betweeninte fidelity of the data and the
latency in sharing that data.

e Performance of the CenceMe software on the Apple iPhone ag/aonmeasure the impact
of a mobile sensing application on the popular iPhone device

e A validation of the CenceMe application through a user stutlyis is one of the first user
studies that involves a large group of people using a pelsmreasing application running
on off-the-shelf mobile phones for a continuous period wfeti The study provides useful
insights into how people understand and relate to persarairsy technology. The study
offers some suggestions on the further development of peagaitric sensing applications.

e Discussion of our experience in developing, distributingd supporting CenceMe for the
Apple iPhone, first released when the Apple App Store opene?D08. We had to come
to terms with supporting a fairly complex real-time sensapplication outside the normal
controlled laboratory setting. Instead of deploying thex¢&Me application to a small set of
local users (e.g., 30+ users when we first deployed CenceNkokia N95s in 2007) we had
to deal with thousands of users distributed around the world

In Section 2.2, we present a number of design consideratities building an always-on sens-
ing application such as CenceMe on mobile phones. The Cemdéeildlementation is discussed
in Section 2.3, while in Section 2.4 the phone and backerskiflar algorithms are presented. In
Section 2.5, we show the performance of the CenceMe clagsiiicalgorithms as well as detailed
power, RAM, and CPU measurements. In Section 2.6 we dishessapability of the Apple iPhone
for supporting mobile sensing applications. In Section & present the results of our user study

13

and then in Section 2.8 the experience in developing, diging and supporting CenceMe through
the Apple App Store. In Section 2.11 we discuss the relatedk wnd summarize the Chapter in
Section 2.12.

2.2 Design Considerations

Before describing the implementation of the CenceMe agpba on the phone and backend servers,
we first discuss the system development challenges encedntdnen implementing an application
such as CenceMe on the phone. These impact several aspdwtsapthitectural design.

2.2.1 Mobile Phone Limitations

OS Limitations. Although top-end mobile phones have good computationahluéfy, often in-
cluding multiple processors, they are limited in terms @& gfnogrammability and resource usage
control offered to the developer. For example, the Nokia i9equipped with a 330 MHz ARM
processor, 220 MHz DSP, and 128 MB RAM. However, when dewetpp non-trivial application
on mobile phones a number of challenges arise. This is duartrbpcause mobile phones are pri-
marily designed for handling phone calls in a robust andieesimanner. As a result, third party
applications running on the phone may be denied resoureesesjand must be designed to allow
interruption at any time so as not to disrupt regular openatiof the phone. This places a heavy
burden on application exception handling and recoverywsoft. While programmers may expect
exception handlers to be called rarely, in Symbian they altea often and are critical to keeping an
application and the phone operational. At the same timéntgexception handlers is difficult be-
cause a voice call can interrupt application code at anyt fioits execution; OS induced exceptions
are outside the control of the programmer.

API and Operational Limitations. Additional limitations arise from the APls provided by the
phone manufacturers. JME implements a reduced set of tleeStandard Edition APIs for use
on mobile phones. Because each phone model is differentfesenthe same manufacturer, the
Symbian OS and JME must be ported to each phone which typiesults in missing or malfunc-
tioning APIs for important new or existing components, sashan accelerometer or GPS. These
API limitations may not be resolved by the manufacturer beeanew models replace old models
in quick succession. As a result, the programmer is forcezbtoe up with creative solutions to
APl limitations. Examples of such API limitations and opéraal problems encountered with the
N95 include a missing JME API to access the N95 internal acoeieter and JME audio API that
exhibits a memory leak, respectively.

Security Limitations. To preserve the phone’s integrity and protect the celluéwork from
malicious attacks, phone manufacturers and cellular n&twperators control access to critical
components, including the APIs for access to the file systenftimedia features, Bluetooth, GPS,
and communications via GPRS or WiFi, through a right manamgersystem. Properly signed keys
from a Certificate Authority are needed to remove all refitnis on using these APIs.

14

Energy Management Limitations. An important driver for application designers on mobile
phone platforms is power conservation, in particular, wiaetio interfaces such as Bluetooth, GPS,
and GPRS are used by the application. As we show in Sectioth2 phone’s Bluetooth, GPS, and
GPRS radios are responsible for draining most of the batewer when CenceMe is running. As
application developers, we want to build applications tifégr good fidelity and user experience
without significantly altering the operational lifetime tife standard mobile phone. Therefore,
designing efficient duty-cycles for the application andige of power hungry radios such Bluetooth
and GPS radio is necessary to extend the phone’s batteryrlifaidition to the power consumed by
Bluetooth and GPS, data upload from the phone via GPRS carledsv a large amount of power,
particularly when the phone is far from a cell base statioghAllenge is therefore to reduce the use
of these radios without significantly impacting the apgima experience. Currently, the Symbian
version of JME does not provide APIs to power cycle (i.e.gtegon and off) the Bluetooth and
GPS radios to implement an efficient radio duty-cycle stpate

The sensing and classification algorithms that run on the@lsan also consume a considerable
amount of energy if left unchecked. As discussed in Sectibnsampling the phone’s microphone
and running a discrete Fourier transform on the sound sauggle more power than sampling the
accelerometer and classifying the accelerometer datanGhis, the only way to reduce energy at
the application layer is to design a sensing duty-cycleghatples sensors less frequently and avoids
the use of the radios for communications or acquisition t#lk signals for location coordinates.

2.2.2 Architectural Design Issues

In response to the observations discussed above we desidDetiiceMe application using split-
level classification and power aware duty-cycling. We alewetbp the application with software
portability in mind.

Split-Level Classification. The task of classifying streams of sensor data from a largebeu
of mobile phones is computationally intensive, potentidilniting the scalability of the system.
With this in mind, we propose the idea of pushing some clasgitin to the phone and some to
the backend servers. However, some classifiers requiretitiatas only available at the server
(e.g., for multiple users in the case of the social contexssification discussed in Section 2.4.2).
We call the output of the classification process on the phwimitives When primitives arrive at
the backend they are stored in a database and are ready toieeeckfor a second level of more
complex classification. The classification operation onlthekend returnfacts which are stored
in a database from where they can be retrieved and publistéth the split-level classification
approach some of the classification can be done on the phdhdhei support of the backend, or
under certain circumstances done entirely on the phone.

CenceMe’s split-level design offers a number of importatveatagesi) support ofcustomized
tags A customized tag is any form of activity, gesture, or cligdiaudio primitive that the user can
bind to a personal meaning. For example, a customized tdd belcreated by a user by associating
a certain movement or gesture of the phone (e.qg., the phang tmved along an imaginary circle)

15

with a user supplied meaning or action, e.g., going to luidter associating the tag “lunch” with
the action, the next time the user repeats the action thésysesence state “lunch” is recognized,
uploaded, and shared with their social network. This teqmnigives the user the freedom to build
her own classified state beyond a set of defaults offered bg€Me, hence, it provides extensibility
of the application;ii) resiliency to cellular/WiFi radio dropouts. By pushing ttlassification of
primitives to the phone, the primitives are computed andelbefl when there is no or intermittent
radio coverage. Primitives are stored and uploaded in baterhen the radio coverage becomes
available;iii) minimization of the sensor data the phone sends to the bddesmers improving the
system efficiency by only uploading classification deriyetinitives rather than higher bandwidth
raw sensed dat#;) reduction of the energy consumed by the phone and therefonetary cost for
the data cellular connection by merging consecutive ugaddgrimitives; and finally) negation
of the need to send raw sensor data to the backend, enhaheingér’s privacy and data integrity.

As discussed in Section 2.4, we design the classifiers thdtipe the primitives to be lightweight
in order to match the capabilities of the phone.

Power Aware Duty-Cycle. To extend the battery lifetime of the phone when running the
CenceMe application we apply scheduled sleep techniqubsttothe data upload and the sens-
ing components. This leads to the following question: homgloan the sensors, Bluetooth, GPS,
and communications upload be in a sleep mode given that therl¢he sleep interval the lower
the classification responsiveness of the system? Typieatiyal time sensing system would supply
sensor data using a high rate duty-cycle. However, such proagh would conflict with energy
conservation needs. Our approach is based on a duty-cysigndgoint that minimizes sampling
while maintaining the application’s responsiveness, dggd by users. This design strategy allows
CenceMe to operate as near to real-time as possible; tisainige system delay is introduced before
a person’s sensing presence is updated on the backendssénviire case of the current implemen-
tation the introduced delay varies according to the typae$g@nce being inferred. The introduction
of delay to improve the overall energy efficiency of the systmakes good sense given the goal
of CenceMe to allow buddies in social networks to casualBwweach other's sensing presence.
For example, knowing that a buddy is in a conversation onaiteiafter the actual conversation
began seems reasonable. Other activities may allow eveateglietroduced latency; for example,
people remain at parties for periods typically greater fivaminutes or more, therefore, the delay
introduced by the classifier in this case has little effectt@naccuracy of the system status reports.
In Section 2.5.2 we present the CenceMe system performaatgation under varying upload and
sensing duty-cycles to best understand these tradeoffSedtion 2.7 we discuss results from the
user study that indicate that even though users view theldibs status via the CenceMe portal in-
frequently they expect current information when viewedéabcurate and timely. This lends itself
to a design that senses at an even lower duty-cycle on avewgemporarily increases the sensing
rate when a buddy’s page is accessed. This results in battdand storage capacity improvements.

Software Portability. To design for better software portability we push as much asan
to JME. We follow this design goal to maximize software rehity given that the majority of

16

GUI

Audio Storage Launcher/
Classifier | L / | _____ o _______ Controller

1 1
Accelerometer i Raw Sensor Data i Uploader
Classifier B e EEEEE LR Manager

Sensing

Controller Accelometer Audio Random GPS Bluetooth
Client Client Photo Sensor Daemon
JME
Symbian C++
Accelerometer Audio Event
Sensor Sensor Detector

Figure 2.1: Architecture of the CenceMe phone software.

modern mobile phones use a Java virtual machine to suppdft gidgrams. However, because
of the API limitations discussed earlier, a number of congris need to be implemented directly
using native Symbian APIs to support the necessary featfie®d by the phone but not available
through JME.

2.3 CenceMe Implementation

In this section, we present the CenceMe implementationilsletihe CenceMe application and
system support consists of a software suite running on NNKi& mobile phones and backend
infrastructure hosted on server machines. The softwatalled on the phones performs the fol-
lowing operations: sensing, classification of the raw sglsga to produce primitives, presentation
of people’s presence directly on the phone, and the uplo#ttegirimitives to the backend servers.
Primitives are the result ofi) the classification of sound samples from the phone’s miangh
using a discrete Fourier transform (DFT) technique and ehinadearning algorithm to classify the
nature of the soundi) the classification of on board accelerometer data to deterthie activity,
(e.g., sitting, standing, walking, runningj)i) scanned Bluetooth MAC addresses in the phone’s
vicinity; iv) GPS readings; and finally) random photos, where a picture is taken randomly when a
phone keypad key is pressed or a call is received. Classificalgorithms that infer more complex
forms of sensing presence (i.e., facts) run on backend mashas discussed in Section 2.4.2.

2.3.1 Phone Software

Figure 2.1 shows the CenceMe software architecture for tilead\N95 phone. The phone architec-
ture comprises the following software components:
Symbian Servers.The accelerometer sensor, audio sensor, and event deteotwr are Symbian

17

C++ modules that act as daemons producing data for corrdsgpdME client methods. Their
function is, respectively: polling the on board accelertensensor, sampling the phone’s micro-
phone, and detecting incoming/outgoing calls and keypgdokesses. The sensed data is sent to
the JME methods through a socket. Events detected by the @stattor daemon are used by the
random photo module at the JME level to generate randomrpitio trigger a photo upon an
incoming phone call or to signal the application that it lmsestart after a phone call for reliability
reasons.

Bluetooth Daemon. This component resides at the JME level and is used to peréorinquiry
over the Bluetooth radio to retrieve the MAC addresses ofraighboring Bluetooth nodes. The
MAC addresses of the neighboring nodes are used to deterhtiveze are CenceMe phones in the
area at the time of the inquiry.

Accelerometer Client. This component is written in JME and connects through a tdckéhe
accelerometer sensor to retrieve the accelerometer dtgastigam. The byte stream is stored in
local storage and retrieved by the activity classifier to pota the activity primitive, as discussed
in Section 2.4.1.

Audio Client. This JME client component connects through a socket to timeb&n audio server
to retrieve the audio byte stream that carries the PCM emtoefresentation of the sound sample.
The byte stream is stored in local storage and retrieveddgdidio classifier to compute the audio
primitive, as discussed in Section 2.4.1.

Random Photo. This IME module is designed to trigger the capture of a phptmuwetection of
incoming calls or pressed keypad keys. The events are sztélivough a socket from the event
detector daemon. When the picture is taken it is storedlioaatil the next upload session.
GPS.The JME GPS implementation supplies a callback method $hagriodically called by the
Nokia GPS daemon to provide the geographical location optiene. The GPS coordinates are
stored locally and then uploaded to the backend servers.

Sensing Controller. This component is responsible for orchestrating the uptherlJME sensing
components. The sensing controller starts, stops, andtonstihe sensor clients and the Bluetooth
manager and GPS daemon to guarantee the proper operatton syfstem.

Local Storage. This component stores the raw sensed data records to bespeocby the phone
classifiers. As the classification of raw data records isqoeréd, the data records are discarded,
hence none of the sampled data persists on the phone. Thidisutarly important to address the
integrity of the data and the privacy of the person carrymgghone since none of the raw sensed
data is ever transferred to the backend. Primitives, GP®&lowies, and Bluetooth scanned MAC
addresses are stored in local storage as well, waiting faplrad session to start.

Upload Manager. This component is responsible for establishing connestimnthe backend
servers in an opportunistic way, depending on radio linkilabdity, which can be either cellu-
lar or WiFi. It also uploads the primitives from local stoeagnd tears down the connection after the
data is transferred. Details about how the upload manatgnaicts with the backend are discussed
in Section 4.2.2.

18

4 f “y Buddy Status ﬂ'%
g“ﬁ.“suddynatus :": = ‘ ‘ 0
maam||)b el

For George Orwell's Jast

known status, significant. || For George Orwell's last

place is animal farm, social |
context is party, activity is H

known status, significant
‘ place is animal farm, social
context is party, activity is
dancing, conversation is
conversation =

dancing, conversation is
conversation o

Figure 2.2: ClickStatus on the Nokia N95.

Privacy Settings GUI. The privacy settings GUI allows the user to enable and destia five sens-
ing modalities supported on the phone, (viz. audio, acogleter, Bluetooth, random photo, and
GPS). Users can control the privacy policy settings fromphene and the CenceMe portal. By
doing so users determine what parts of their presence te stmat who they are willing to share
sensing presence with or not as the case may be.

ClickStatus. To complement the full visualization of current and histatisensing presence avail-
able via the CenceMe portal (a screenshot of the portal issho[93]), we developed ClickStatus,

a visualization client that runs on the mobile phone. Theisgnpresence is rendered as both icons
and text on the phone GUI, as shown in Figure 2.2. The presendered by ClickStatus is subject
to the same privacy policies settings as when viewed use@tnceMe portal.

After a user logs in with their CenceMe credentials, they amesented with a list of their
CenceMe buddies downloaded from the CenceMe server. Canbehltlies are Facebook friends
running CenceMe on their N95. While this is always done at stp, a user has the ability to
refresh their buddy list at any time via a menu command optiBg highlighting and selecting
a buddy from buddy list, a user triggers ClickStatus to fatithGPRS or WiFi the latest known
sensing presence for the selected buddy from the CenceMersétis presence is displayed on
a separate result screen; from there a user can either aritutm to their buddy list or refresh the
currently displayed buddy’s presence.

WatchTasks. The purpose of WatchTasks is to restart any process that falilatchTasks also
serves several other ancillary purposes includipdaunching CenceMe when the phone is turned
on; ii) starting the CenceMe application software componentsarctirect orderiji) restarting the
CenceMe midlet after a phone call is complete. This is detkuethen the event detector daemon
exits, signaling the end of a caliy) restarting all support daemons when CenceMe fails. Such
action is necessary when we cannot reconnect to specificaeenmder certain failure conditions;
and finallyv) restarting all the CenceMe software components at a pretseval to clear any mal-
functioning threads.

19

|
| Event-driven Periodic
i Classifiers Classifiers

:

i \
i
i Apache/ |_ | XML-RPC MYSaL i
I Tomcat handlers !
\ i
, i
: :
i y i
|
|
i Web services Push !
| API Connectors i
i
I
|

i
i
! ' 3rd Party

|
Wil 3rd Party
] Applications

‘ Web Portal

Applications ’ Facebook '

Figure 2.3: Software architecture of the CenceMe backend.

The CenceMe phone suite uses a threaded architecture vagsrd ME component shown in Figure
2.1 is designed to be a single thread. This ensures that cenptailure does not compromise or
block other components.

2.3.2 Backend Software

The CenceMe backend software architecture is shown in &igL8. All software components are
written in Java and use Apache 2.2 and Tomcat 5.5 to senviicgtipes from phones and the appli-
cation requests from the CenceMe portal, ClickStatus, acetbook. Communications between the
phone and the backend uses remote procedure calls impledienthe Apache XML-RPC library
on the server. Requests are handled by Java servlets in ratiobi with a MySQL database for
storage.

Phone < Backend Communications. Data exchange between the phone and the backend is
initiated by the phone at timed intervals whenever the phHaeprimitives to upload. Primitives
are uploaded through XML-RPC requests. Once primitivesreéceived at the backend they are
inserted into the MySQL database.

Backend-to-phone communications such as in the signifflanes service described in Section
2.4.2 are piggybacked on botli; the return message from XML-RPC requests initiated by the
phone for primitive upload or periodic ping messages thatphone sends with an ad-hoc XML-
RPC control message; aiiyl the XML-RPC acknowledgment sent to the phone in response to a
primitive upload.

Presence Representation and PublishingCenceMe presence is represented through a set of
icons that capture the actual presence of a person in atiietway. For example, if a person is
driving a car they are represented by the car icon; if a peissengaged in a conversation, an icon
of two people talking represents the state. CenceMe puwsiphesence by means of either a “pull”
or “push” approach. Popular applications such as Facebodk/BSpace require a push approach.

20

4500
4000
3500
3000
2500
2000
1500
1000
500

Power
Power

o

0 : 0
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Frequency (KHz) Frequency (KHz)
(a) DFT of a human voice sample registered by gb) DFT of an audio sample from a noisy envi-
Nokia N95 phone microphone. ronment registered by a Nokia N95 phone micro-
phone.

Figure 2.4: DFT of audio samples.

This allows content to be inserted via some variant of a HTraRsported markup language (e.g.,
FBML, XML). Other applications such as Skype, Pidgin, andd@le require a pull mechanism
to make content available. The CenceMe backend suppottbgmed data publishing by exposing
a standard web service based API. This API is also used toosutie data needs of CenceMe
components such as ClickStatus and the CenceMe portal-tRsslt publishing is supported by the
PushConnector component shown in Figure 2.3. This compdranlles the generic operation of
pushing CenceMe presence based on user preferences to amafrapplications. For the Facebook
implementation, three Facebook widgets are offered to@xpasubset of the functionality available
on the portal, namely, BuddySP, Sensor Status, and Sensserize. Buddy SP is a buddy list
replacement widget that lists CenceMe friends for usergaign. It is the same as the standard
widget that lists friends within Facebook but augments lisiswith a mini-sensor presence icon
view. Sensor Status provides automated textual statusagesgpdates such as “Joe is at work, in a
conversation, standing”. Finally, Sensor Presence pesvidsimplified version of the user’s current
status through an iconized representation of the usersepoe.

2.4 CenceMe Classifiers

In this section, we discuss the algorithms used by the Ceacgdésifiers running on the phone and
the backend according to the split-level classificatiorigtediscussed earlier.

2.4.1 Phone Classifiers

Audio classifier. The audio classifier retrieves the PCM sound byte stream thenphone’s local
storage and outputs the audio primitive resulting from thssification. The primitive is stored back
in local storage (see Figure 2.1). This audio primitive dadés whether the audio sample represents
human voice and is used by backend classifiers such as thersation classifier, as discussed in
Section 2.4.2.

The audio classification on the phone involves two stepstufeaextraction from the audio

21

x Talking
© No talking

1500 2000
Il

Standard Deviation
1000

500 1000 1500 2000 2500

Mean

Figure 2.5: Discriminant analysis clustering. The dashed line is deiteed by the discriminant analysis
algorithm and represents the threshold between talkingnanthlking.

sample and classification. The feature extraction is pewadr by running a 4096 bin size discrete
Fourier transform (DFT) algorithm. A fast Fourier transfofFFT) algorithm is under development.

An extensive a-priori analysis of several sound samplen ftifferent people speaking indicated
that Nokia N95 sound streams associated with human voiceprenost of their energy within a
narrow portion of the 0-4 KHz spectrum. Figures 2.4(a) addl®).show the DFT output from two
sound samples collected using the Nokia N95. The plots sheveapture of a human voice, and
the sound of an environment where there is not any activeersation on-going, respectively. It
is evident that in the voice case most of the power concastiatthe portion of spectrum between
~250 Hz and~600 Hz. This observation enables us to optimize the DFT dhgurto be efficient
and lightweight by operating in the250 Hz to~600 Hz frequency range. Classification follows
feature extraction based on a machine learning algorithinguike supervised learning technigue of
discriminant analysis. As part of the training set for trerteng algorithm we collected a large set of
human voice samples from over twenty people, and a set ob aadnples for various environmental
conditions including quiet and noisy settings.

The classifier’s feature vector is composed of the mean andiatd deviation of the DFT power.
The mean is used because the absence of talking shifts theloveer. The standard deviation is
used because the variation of the power in the spectrum wrddysis is larger when talking is
present, as shown in Figure 2.4. Figure 2.5 shows the cingtérat results from the discriminant
analysis algorithm using the mean and standard deviatidheoDFT power of the sound samples
collected during the training phase. The equation of théelhdine in Figure 2.5 is used by the
audio classifier running on the phone to discern whether d@d samples comes from human
voice or a noisy/quite environment with 22% mis-classifmatrate. Audio samples misclassified
as voice are filtered out by a rolling window technigue usedhigyconversation classifier that runs

22

(a) Sitting

T Ve [P TP P AT e e

ADC

.
100 200 300 400 500 600 700 800
Time

(b) Standing
B T T A e o T et A AV
200 il

ADC

O, PUAA L A Ssaatbaastabon i b Ak Aoy "l
Coahatn Lt om0) Lo ad 4 L ko b bt o) el i |

.
0 100 200 300 400 500 600 700 800
Time

(c) Walking
T

Figure 2.6: Accelerometer data collected by the N95 on board acceldsymen the person carrying the
phone performs different activities: sitting, standing/king, and running.

on the backend, as discussed in Section 2.4.2. This boastzetifiormance fidelity of the system
for conversation recognition.

Activity classifier. The activity classifier fetches the raw accelerometer data the phone’s local
storage (see Figure 2.1), and classifies this data in ordefitin the current activity, namely, sitting,
standing, walking, and running. The activity classifiersists of two components: the preprocessor
and the classifier itself.

The preprocessor fetches the raw data from the local staraggonent and extracts features
(i.e., attributes). Given the computational and memorystaimts of mobile phones, we use a
simple features extraction technique which prove to bedeiftly effective, rather than more com-
putationally demanding operations such as FFT. The prepsat calculates the mean, standard
deviation, and number of peaks of the accelerometer readiiogg the three axes of the accelerom-
eter.

Figure 2.6 shows the raw N95 accelerometer readings al@tithe axes for sitting, standing,
walking, and running for one person carrying the phone. Aseeted, the sitting and standing
traces are flatter than when the person is walking and runtfiten standing, the deviation from
the mean is slightly larger because typically people tere¢l a bit while standing. The peaks in
the walking and running traces are a good indicator of feptétequency. When the person runs a
larger number of peaks per second is registered than whestepealk. The standard deviation is
larger for the running case than walking. Given these olasiens, we find that the mean, standard
deviation, and the number of peaks per unit time are accteatare vector components, providing
high classification accuracy. Because of lack of space, wealaeport similar results to those
shown in Figure 2.6 for other people. However, we obsenangtisimilarities in the behavior of

23

the mean, standard deviation, and the number of peaks facitelerometer data across different
individuals.

Our classification algorithm is based on a decision treenigcie [94][95]. The training process
of the classifier is run off-line on desktop machines bec#useomputationally costly. In order to
maximize the positive inference of an individual's aciyiprior work suggests that the best place
on the body to carry a phone is the hip [26]. After interviegvthe participants in our user study,
we conjecture that most of people carry their phones in theits pockets, clipped to a belt or in
a bag. We collected training data from ten people that ramd@aced the mobile phone inside
the front and back pockets of their pants for several dayspMfeto consider other usage cases in
future work.

Atthe end of the training phase, we feed the training setad48 decision tree algorithm, which
is part of the WEKA workbench [96]. The output of the decistore algorithm is a small tree with
depth three. Such an algorithm is lightweight and efficidtie time needed by the preprocessor
and the classifier to complete the classification processssthan 1 second on average running on
the Nokia N95.

2.4.2 Backend Classifiers

Backend classifiers follow the split-level classificatiasidjn and generate facts based on primitives
provided by the phone or facts produced by other backendifitas. Facts represent higher level
forms of classification including social context (meetipgrtying, dancing), social neighborhood,
significant places, and statistics over a large group of (&ata, does a person party more than
others, or, go to the gym more than others?). However, sontleecflassifiers (e.g., conversation
and CenceMe neighborhood) will eventually be pushed dowthdghone to increase the system
classification responsiveness. In this case, the primsitiveuld still be uploaded to the backend in
order to make them available to other backend classifiers.

Backend classifier processing is invoked in two ways: eithe@mt triggered or periodic. An
example of an event triggered classifier is the “party” dfeess it receives as input the primitives
from the phone that contain the volume of an audio sample lamddtivity of the user and returns
whether the person is at a party and dancing. Along with étidggsed classifiers there is a collection
of periodically executed classifiers. An example of suckgifeers is the “Am | Hot” classifier that
runs periodically according to the availability of data iwimdow of time, (i.e., day long data chunk
sizes).

In what follows, we describe the backend classifiers and timgilementation in more detail.
Conversation Classifier. This classifier's purpose is to determine whether a persomasconver-
sation or not, taking as input the audio primitives from theme. However, given the nature of a
conversation, which represents a combination of speectsitartes, and the timing of sampling,
the audio primitive on the phone could represent a silencegla conversation. Thus, the phone’s
audio primitives are not accurate enough to determine ifsgueis in the middle of a conversation.
To address this the backend conversation classifier usding reindow of N phone audio primi-

24

tives. The current implementation ugds5 to achieve classification responsiveness, as discussed
in Section 2.5.1.

The rolling window filters out pauses during a conversatimmemain latched in the conversa-
tion state. The classifier triggers the “conversation’estbtwo out of five audio primitives indicate
voice. The “no conversation” state is returned if four outieé audio primitives indicate a “no
voice”. We determined experimentally that fewer samplesrareded to trigger the conversation
state than no conversation state. We therefore design tiveisation classifier following an asym-
metric strategy that quickly latches into the conversatitate but moves more conservatively out
of that state. We made this choice because if the convensel&ssifier can be used as a hint to
determine if a person can be interrupted (for instance wjthane call), then we only want to drop
out of conversation state when the conversation has ddyieiteled.

The accuracy of the conversation classifier is discusseédtidh 2.5.1.

Social Context. The output of this classifier is the social context fact, whicderived from mul-
tiple primitives and facts provided by the phone and othexkead classifiers, respectively. The
social context of a person consists Yfneighborhood conditions, which determines if there are any
CenceMe buddies in a person’s surrounding area or not. Essifier checks whether the Blue-
tooth MAC addresses scanned by the phone, and transmitted limckend as a primitive are from
devices belonging to CenceMe buddies (i.e., the systerasstbe Bluetooth MAC addresses of the
phones when CenceMe is installed); social status, which builds on the output of the conversa-
tion and activity classifiers, and detected neighboringdgébte buddies to determine if a person
is gathered with CenceMe buddies, talking (for example atating or restaurant), alone, or at a
party. For example, by combining the output of the convereatlassifier, the activity primitive,
and neighboring Bluetooth MAC addresses a person mightdssified as sitting in conversation
with CenceMe friends. Social status also includes the ifieestion of partying and dancing. In this
case a combination of sound volume and activity is used. Weausimple approach that uses an
audio volume threshold to infer that a person is at a partyoor Training for this is based on a few
hours of sound clips from live parties using the N95 micraphdWe also take a simple approach to
the classification of dancing. We determine a person is dgri€the person is in the “party” state
and the activity level is close to running, given that thesd&mmeter data trace for running is close
to dancing. Although we realize the definition of social exttis somewhat simplistic and could
be improved, this is a first step toward the representatiqueople’s status and surroundings in an
automated way.

Mobility Mode Detector. We employ GPS location estimates as input to a mobility mdassdier
[97, 48]. This classification is currently only binary in @atput, classifying the mobility pattern as
being either traveling in a vehicle or not (i.e., being stadiry, walking, running). We use a simple
feature vector based on multiple measures of speed; thadirgy multiple distance/time measure-
ments for variable sizes of windowed GPS samples and theibwpeed estimation of the GPS
device itself. The classifier is built with the JRIP rule lgiag algorithm, as implemented in WEKA
[96], based upon manually labeled traces of GPS samples.owipansate for any inaccuracy in

25

GPS samples by filtering based on the quality measureshogzontal dilution of precision and
satellite counts) and outlier rejection relative to theneates of previous and subsequent GPS sam-
ples.

Location Classifier. The function of this component is to classify the locatiotineates of users for
use by other backend classifiers. GPS samples are filtered basguality (as discussed above) to
produce a final location estimate. Classification is drivasdd on bindings maintained between a
physical location and a tuple containingya short textual descriptioii) an appropriate icon repre-
sentation; andi) a generic class of location type (i.e., restaurant, lihretiz). Bindings are sourced
from GIS databases and CenceMe users. We use the Wikim&}itof351S data in our implemen-
tation. Relying solely on GIS information limits the riclsseof shared presence. Typically, people
tend to spend a larger proportion of their time in relativiely locations. This motivates the idea of
user-created bindings. CenceMe allows users to insertdahi bindings via either the portal or the
phone. Using the phone, users can manually bind a locati@mwhiey visit it. Similarly, users can
use the portal to also add, edit or delete bindings manu&linceMe also provides the ability to
learn significant places in an automated manner in contvabetmanual bindings discussed above.
New bindings learned by the system are based on the mobiitgnm of the user. This aspect of
CenceMe directly builds on the existing work in locationciaanalysis referred to as significant
places [99] [100]. In CenceMe we perform k-means clustenisigg WEKA [96] where the param-
eters of the clustering algorithm are determined experiatign Once a potential significant place
is discovered the next time the person enters that locatierphone prompts the person’s mobile
phone to confirm or edit the details of the location. Defaallidls and icons are initially based upon
the most popular nearest known existing binding defined byuder or CenceMe buddies. To re-
duce the burden on the users to train the classifier with tdveirbindings we structure the classifier
to initially borrow existing bindings from their CenceMedilies [79].

Am | Hot. Making the large volumes of data collected by CenceMe edsjjgstible to users is

a challenge. We address this challenge using a series ofesand meaningful metrics that relate
historical trends in user data to either recognizable $atéeotypes or desirable behavioral pat-
terns. These metrics are calculated on a daily basis and uigsv patterns in their own data and
compare themselves with their buddies. The metrics indbédollowing: i) nerdy, which is based
on individuals with behavioral trends such as being alor@{fthe Bluetooth activity registered by
the person’s phone), spending large fractions of time itagetocations (e.qg., libraries) and only
infrequently engaging in conversatiai); party animal, which is based on the frequency and dura-
tion with which people attend parties and also takes intoaatcthe level of social interactioiii)
cultured, which is largely location based, being driven thy frequency and duration of visits to
locations such as theaters and museumdealthy, which is based upon physical activities of the
user (e.g., walking, jogging, cycling, going to the gym)ddimally, v) greeny, which identifies users
having low environmental impact, penalizing those whoeltieir cars regularly while rewarding
those who regularly walk, cycle or run.

26

Table 2.1: CenceMe activity classifier confusion matrix

Sitting | Standing| Walking | Running
Sitting 0.6818| 0.2818 | 0.0364 | 0.0000
Standing| 0.2096| 0.7844 | 0.0060 | 0.0000
Walking | 0.0025| 0.0455 | 0.9444 | 0.0076
Running | 0.0084| 0.0700 | 0.1765 | 0.7451

Table 2.2: CenceMe conversation classifier confusion matrix _
Conversation| Non-Conversation

Conversation 0.8382 0.1618
Non-Conversation 0.3678 0.6322

2.5 System Performance

In this section, we present an evaluation of the CenceMaagtigin and system support. We start
by discussing the performance of the CenceMe classifiershemdpresent a set of detailed power,
memory, and CPU benchmarks. Finally, we present the refsaltsa detailed user study.

2.5.1 Classifiers Performance

We examine the classifiers performance based on a sma#l-sapkrvised experiments. We dis-
cuss classifier accuracy, and the impact of mobile phoneeplant on the body, environmental

conditions, and sensing duty-cycle. The results are baseight users who annotate their actions
over a one week period at intervals of approximately 15 to &@utes, unless otherwise stated.
Annotations act as the ground truth for comparison withsifees outputs. The ground truth data
is correlated to the inference made by the CenceMe classifignis data is collected at different

locations and by carrying the mobile phone in various pamsgtion the body. Tables 2.1, 2.2 and
2.3 show the confusion matrices for the activity, convépsatand mobility classifiers, respectively,

over a one week period. These reported values representaggpodximations; the human annota-
tions may be inaccurate or incomplete at times.

General Results

While the activity inference accuracy reported in Tablei2.lp to 20% lower than that reported
using custom hardware [27], we achieve our results using ttvel accelerometer on a Nokia N95
and engineering the system to be power efficient and worknarthe resource limitations discussed
earlier. We find that our classifier has difficulty differextiing sitting and standing given the simi-
larity in the raw accelerometer traces, as shown in Figuse \&le observe that variations in locale
(e.qg., office, restaurant) and people (e.g., body type, hiedp not significantly impact the activity
classification performance.

The conversation classification accuracy reported in Tateis high, but the classifier also
suffers from a relatively high rate of false positives. Tigidue to a combination of classifier design

27

Table 2.3: CenceMe mobility mode classifier confusion matrix
Vehicle | No Vehicle
Vehicle 0.6824| 0.3176
No Vehicle| 0.0327| 0.9673

walking i
ning s

Accuracy

pocket hip necklace

Body position

Figure 2.7: Activity classification vs. body position.

and “mis-annotation” by participants. The classifier répopnversation even if the person carrying
the phone is silent but someone is talking nearby. Naturpdiyticipants often did not account for

this fact. Furthermore, due to the asymmetric state lagcfinthe conversation classifier discussed
in Section 2.4.2, the classifier remains in the conversasiate for a longer time than the real

conversation duration, generating false positives.

Impact of Phone Placement on the Body

While mobile phone placement on the body is a personal chpraa work has shown body place-
ment to affect the accuracy of activity inference [26]. Weess the impact on classification when
the Nokia N95 is placed at different places on the body, ngniela pocket, on a lanyard, and
clipped to a belt. Classification accuracy derived from tleugd truth annotated data is shown in
Figure 2.7. The pocket and belt positions produce similsulte for all classified activities, while
the lanyard position yields poor accuracy when classifitigng, and a relatively lower accuracy
for running. In follow-up laboratory experiments, we findthhe length of the lanyard cord and
the type of lanyard we provided to participants affect theults. If the lanyard is long the phone
rests frequently on the body, particularly while walkinglastanding, allowing for accurate classi-
fication. However, even when seated a lanyard-mounted pmayeswing from side to side with
incidental torso movements, causing a mis-classificatiostanding or walking. Furthermore, run-
ning is sometimes classified as walking because the lanyampsl the accelerometer signatures
that indicate running, compared to other body positiors. (belt, pocket) where the phone is more
rigidly affixed to the body.

We find that conversation classification accuracy is much sesmsitive to the body placement
of the phone. When the phone is worn as a lanyard, convensatid no conversation are detected

28

1t Il conversation] 1
[Inon-conversation|

o o
o ©

Accuracy
2

Accuracy

o

[N
<)
[N

0
0

indoor quiet indoor noisy outdoor

10 20 30 40 50 60
Location Audio sensor duty cycle (sec)

(a) Conversation classifier in different locationgb) Conversation classifier accuracy with a vari-
able duty-cycle.

o
©

Operating point

o
=)

True positive
o
S

——window size =5
—e—window size =10
—v—window size = 30

o
N

0.2 0.4 0.

6 08 1
False positive

(c) ROC curves for the conversation classifier.

Figure 2.8: Conversation classifier performance.

with 88% and 72% accuracy, respectively. The same testteghb@ath the phone in a pocket yields
a classification accuracy of 82% for conversation and 71%daronversation, despite the muffling
effect of clothing.

Impact of Environment

We find activity classification accuracy to be independentrafironment. Mobility classification

is inherently not tied to a particular location but rathert@ansitions between locations. However,
we do see an impact from the environment on conversatiosifitagion accuracy. Figure 2.8(a)
shows the classification accuracy categorized by locatidrere the different locations are: out-
doors, indoor noisy (i.e., an indoor location with backgrdwnoise such as in a cafe or restaurant),
and indoor quiet (i.e., with very low background noise sushtahe library or office). The classifier
detects conversation with more than an 85% success rate iwtemindoor noisy environment.
In outdoor scenarios there is an increase in false positivethe accuracy of detection of conver-
sation, a design focus, remains high. Lower conversatidectien accuracy in very quiet indoor
environments occurs because the classifier is trained hétlaterage case background noise. In a
noisy environment there is an increase in power across #fleofrequencies so a threshold set for

29

this environment in mind will be larger than if a very quieveanment is assumed. As a result,
in very quiet environments fewer conversations are dedesitece the contribution of background
noise is lower. These performance characteristics aresatdiesult of the audio classifier design,
which attempts to reduce the use of the phone’s resources.

Impact of Duty-Cycle

Applying a sleep scheduling strategy to the sensing rougineeded in order to increase the battery
lifetime of the phone. Note that in Section 2.5.2 we discufsithe gains with a ten minute inter-
sample time. However, this has a negative impact on the ymediace of the classifiers, particularly
in detecting short-term (i.e., duration) events that odmetrveen samples. For example, in Table
2.3, the venhicle state is only correctly detected 68% of iime.t This lower accuracy is a product
of shorter car journeys around town for durations less thanrter-sampling rate. This problem
is aggravated by other factors such as the delay in acquixiogl GPS-based positioning data. To
investigate the impact of duty-cycling on conversatiorssification, we set up an experiment with
eight users that periodically reprogrammed their phongis different duty-cycles while keeping a
diary. Figure 2.8(b) shows the performance of the phongisesation classifier as the microphone
sensing duty-cycle varies. Each value represents thegwefdive trials. We see that there is little
benefit in adopting a sleeping time smaller than 10 secondsveker, longer duty-cycles impact
performance. We observe only a 40% accuracy using the ceati@n classification for a 60 second
duty-cycle, which is the longest duty-cycle we considenggeementally.

A longer sensing duty-cycle also implies a reduction of theversation classifier rolling win-
dow size to maintain the high responsiveness of the classifiesmaller conversation classifier
rolling window size leads to a higher mis-classificatiorerafrhis becomes apparent if we look
at the Receiver Operating Characteristic (ROC) curves @fctinversation classifier as shown in
Figure 2.8(c). The ROC curves show the impact of the windae sind threshold that triggers
conversation (reflected in the curve shape) on the classifiee positive and false positive rates.
We use offline analysis to determine the output of the coatiens classifier as we alter the window
size and threshold value. We observe that the larger theowirfde.,N=10,30), the larger the true
positives to false positives ratio becomes. In our curremlémentation, we adopti=5 and an
audio sensing rate of 30 seconds (our default operating polabeled in the figure). With these
parameters the worst-case conversation classificatiay aehitting communication delays is 1.5
minutes. On the other hand, if we used a window whé+&0, which would give higher accuracy,
we would get a delay of 9 minutes on average. This illustritedrade off between sampling rate
and classification speed. However, we choose to operatecitit@pthe design space that increases
the true positive rate at the expense of being less accurale idetection of non-conversation be-
cause the cost, from a user’s perspective, of being wrongwleécting a conversation is larger
than the cost of being wrong when detecting non-conversatio

30

-
©

10 Minute Cycle N
£
7 Upload cycle Activity sensing
/M

/ Audio sensing cycle fcycle

r'y

-
o

-
b

-
(%)

I

E ‘/ Audio classifier
g, 1 1 '
g 08 |- l' :
3 | 4
Tk |
|
04 | !
[L1'R '
—p Bluetooth scan

o
o

GPS trying to lock

o

0 100 200 300 400 500 600

Time (seconds)

Figure 2.9: Details of the power consumption during a sampling/uplodekival.

2.5.2 Power Benchmarks

Power measurements of CenceMe are made using the NokiayEPmfiler, a standard software
tool provided by Nokia specifically for measuring energy o$eapplications running on Nokia
hardware. The profiler measures battery voltage, curremt,temperature approximately every
third of a second, storing the results in RAM.

Figure 2.9 shows the typical contribution of various sessord classifiers to the overall energy
budget during a ten minute sensing cycle. Bluetooth prayimétection requires a 120 second
scan period to capture neighboring MAC addresses due toatieecflushing limitations of the
Bluetooth APl in JME. GPS location detection is inherentiyver hungry and takes time to acquire
“a lock” when turned on. CenceMe allows 120 seconds for a tocke acquired and then the
N95 keeps the GPS activated for another 30 seconds (whichtisfaur control). The highest
spikes shown on the plot are due to the upload of data which tieecellular radio. The next
highest spikes are due to sampling of audio data. The pefiseMeral seconds following the audio
sample is where the audio classifier runs, using a relatiiglii amount of energy to compute a
DFT. The accelerometer sampling and activity classificatice fast and use little power. While
this is a typical pattern of energy consumption there arerdidictors which can cause variations,
including: distance to cell tower, environmental radiorelateristics, the amount of data to upload,
the number of Bluetooth neighbors, denial of resources dubé phone being in use for other
purposes, network disconnections, sensor sample inteisainple durations, upload interval, GPS
lock time, and temperature.

Figure 2.10 shows the energy consumption measured withrtféep for sampling intervals
ranging from 10 seconds to 60 seconds with power in Watts ewéitical axis. The second line
and axis in the graph shows the latency in getting the factbdédbackend as a function of the
sample interval including the sample interval itself, slfisr latency, and network delay. The audio
classifier latency is actually a multiple of three times thtues on this line since the classifier needs
at least three facts from the phone in order to detect coatiersand social setting. The horizontal
axis shows the sampling interval for the accelerometer agba The proximity and GPS sensors

31

-
IS

70

12 allyh)
1]
4 1 50 @

"

3 — A / .g
2708 40 §
;g 0.6 // . 30 <
5 - .,
g 04 20 2
< ./

0.2 10

0 T T T 0
0 20 40 60

Sensing Interval (seconds)

Figure 2.10: The tradeoff between energy consumption and data latenCgiiceMe.

are sampled at ten times the x-axis value (e.g., a 60 secterdahmeans Bluetooth and GPS are
sampled at 600 seconds, or ten minute intervals).

The combination of the two lines show the tradeoff betweearrggnuse and data latency for any
particular sampling interval. There is no optimal sampilimigrval since users will have different
requirements at different times. For example, users may avahort sample interval when they are
active, a slow interval when they are inactive, and a very sfderval when their phone is running
out of energy. We are currently considering several metlobdsitomatic adaptation of the sample
rate based on sensor input and battery state, combined wgbkrgoreference selector that lets the
user shift the emphasis between long battery life and greatea fidelity.

Overall battery lifetime running the entire CenceMe sofevauite on a fully charged N95 is
measured five times by running the battery to depletion undanal use conditions while using no
other applications on the phone. This results in 6.22 +/9 Gdurs of usage. The reason for the
large standard deviation is that there are many factorsdtmgpbattery life such as temperature,
the number of calls and duration, the number of ClickStatuerigs, range from cell towers when
used, and the environmental and atmospheric conditionthdltithe CenceMe software running,
and the phone in a completely idle state, low power state poaresumption is 0.08 +/- 0.01 Watt-
Hours per hour. The CenceMe suite consumes 0.9 +/- 0.3 WattdHer hour when running with
no user interaction. The conversation and social settiagsdier consumes 0.8 +/- 0.3 Watt-Hours
per hour with all other parts of the CenceMe system idle. Ttwity classifier consumes 0.16 +/-
0.04 Watt-Hours per hour with all other parts of the Cencelgesn idle. Any use of the phone to
make calls, play videos or listen to music will reduce thetima. While the approximately 6 hour
lifetime is far below the idle lifetime of the Nokia N95, wevmidentified several areas where we
believe we can significantly reduce power usage while alscedsing data latency, as discussed in
Section 2.2.2.

32

Table 2.4: RAM and CPU usage for the CenceMe N95 client

CPU RAM (MB)
Phone idle 2% (+/- 0.5%) 34.08
Accel. and activity classif. | 33% (+/- 3%) 34.18
Audio sampling and classif. 60% (+/- 5%) 34.59
Activity, audio, Bluetooth | 60% (+/- 5%) 36.10
CenceMe 60% (+/- 5%) 36.90
CenceMe and ClickStatus | 60% (+/- 5%) 39.56

2.5.3 Memory and CPU Benchmarks

We also carried out benchmark experiments to quantify thitiRAd CPU usage of the CenceMe
software running on the N95 using the Nokia Energy Profilet.tbor all measurements we enable
the screen saver to decouple the resource occupation due @enhceMe modules from that needed
to power up the N95 LCD.

We start by measuring the amount of RAM and CPU usage wherhibregpis idle with none of
the CenceMe components running. We then repeat the mea=nirernen either the accelerometer
sampling and activity classification or audio sampling alasification are active. Then we add
each of the remaining CenceMe modules until the whole soésaite is running. The results
are shown in Table 2.4. As expected, audio sampling andrieatctor extraction require more
computation than the other components. This is in line withgower measurements result shown
in Figure 2.9 where audio sampling and processing are showsé a relatively high amount of
energy. We also note that the memory foot print does not grawwhnas components are added.
Together CenceMe and ClickStatus occupy 5.48MB of RAM.

2.6 The iPhone as a Mobile Platform for People-Centric Sensg Ap-
plications

In this Section we discuss the performance of the first géoerdpple iPhone when using the on-
board sensors to realize mobile sensing applications. i§hise of the early studies that evaluates
the capabilities of the first iPhone generation and its @ttiti support people-centric sensing appli-
cations. The iOS features, including its ease of use, righabidl efficient application distribution
system through the Apple App Store makes the iPhone an apgeahtform for development of
new mobile applications. A natural question for our comrmuis what are the trade-offs when
implementing and deploying a sensing application usingRhene; more specifically:

e How easy is it to program a sensing application on the iPhone?

e What are the pros and cons of the iPhone in comparison to sdmesor capable mobile
platforms?

e What is the energy profile when the iPhone’s sensors, WiFicatidlar radio are involved in
realizing the application?

33

e What is the processing performance of the iPhone when rgraigmal processing algorithms
such as fast fourier transform, a common tool used to ink¢gardio and accelerometer sensor
data?

We address these questions in this Section. While the pgeggmnof our results is limited due
to space, we provide a short qualitative comparison of a murabdevices used for mobile sensing
including the first generation Apple iPhone, Nokia N95, amtell Mobile Sensing Platform (MSP).
The main contribution of this study is the observations arstbhts when running CenceMe, a rep-
resentative people-centric sensing application [14],haniPhone. Specifically, we quantitatively
evaluate the first generation iPhone’s computational dhifyalenergy profile, and localization ac-
curacy when running CenceMe. We believe this study will befulgo the growing community of
iPhone developers, particularly, those interested irdimgl people-centric sensing applications.

2.6.1 Comparison of Mobile Sensing Platforms: iPhone, N95wl MSP

In what follows, we present a short qualitative comparisétthe first generation Apple iPhone,
Nokia N95 mobile phone, and the Intel Mobile Sensing Platf¢MSP)[11]. All these devices are
actively being used in support of mobile sensing applicatiand systems development. The N95 is
one of the top-end Nokia mobile phones equipped with an asmeleter and GPS, while the MSP is
representative of the class of embedded devices used faraativity recognition research [11]. A
comparison of some of the technical details of the threec#e\is reported in Table 2.5. As shown in
Table 2.5, all the three platforms present similar comjutat capabilities given similar processors,
and comparable storage and ROM size. The RAM on the MSP is smelier than on the iPhone
and N95, which first and foremost are designed as mobile ghieace the need to handle multiple
processes at the same time including graphics computattenMSP short-range radio technology
is flexible allowing the implementation of advanced pairadgorithms between nodes while the
use of the iPhone and N95's short-range radio is limited nopg neighbors interactions. The
main difference between the three devices is representatiebgensing capability; specifically,
the MSP outshines both the iPhone and the N95 in terms of nuoitsailable sensors. This is
not surprising, given that the MSP is an embedded purpotiegbatform for activity recognition.
However, even with a reduced set of on board sensors, the&drd N95 are powerful devices and
capable of inferring human activites - for example, we hawgléemented the full featured CenceMe
application on the N95 [14] as well as a limited version onitigone [101]. However, providing
mobile phones with more sensing capabilities (e.g., gyoestwould greatly enhance the humans
presence classification accuracy given the broader inghetolassifiers feature vectors.

2.6.2 Programmability Characteristics of the iPhone

In what follows, we analyze the programmability charastérs of the first generation iPhone. Any
third-party application is handled by the iPhone OS usingralboxing model which does not allow
the application to access some of the iPhone functionalitgh{ as WiFi APls or iTunes) for security

34

Table 2.5: Mobile devices specs comparison

iPhone 1st gen Nokia N95 Intel MSP 430
Processor 412 MHz ARM 330 MHz ARM 416 MHz Xscale
RAM up to 70 MB up to 128 MB 256 KB
ROM 20 MB up to 160 MB 32 MB

Storage up to 8GB/16GB min-SD card (up to 8 GB mini-SD card (up to 8 GB)
Sensors | 3-axis accel, mic, GP$ 3-axis accel, mic, GPS | 3-axis accel, mic, light, baromete
temp, IR, humidity, compass
Radio WiFi WiFi, Bluetooth Bluetooth, Zigbhee

=

reasons. A simplified version of a SQL database, narsgliye [102], designed to run on resource
constrained environments, is also supported as a meansdapaglication on-the-phone storage.

By following a systematic approach, we intend to answer tleWing question: what are the
positive and negative aspects of the iPhone as a prograramitform? Although the first genera-
tion iOS presents a rich set of features making it on the sarfegood platform for the development
of sensing applications, it also provides some barriertsigurrent stage of development. In what
follow, we briefly discuss the pros and cons of the currenbitfghdevelopment environment.

e Advantages

- The programming languag€erhe iPhone is programmed in Objective-C[92]. ObjectivesC
a superset of the C language, with some object oriented gmoging features. The advantage of
Objective-C, over other languages such as Symbian adoptéibkia, is that it is a quite simple
language to learn and use. The rich set of iPhone APIs and dledesigned iPhone emulator
running on a desktop machine, makes iPhone programmattilitgesign, and code debugging an
efficient process for developers.

- APls Given the extensive documentation, a developer has easgsato comprehend available
APIs. They are also well engineered in order to better attstree developer from lower level
components. An example is the location engine API: the ARIreturns data transparently to
the user regardless of the location coordinates coming ¥R, cellular triangulation, GPS, or a
combination of them. The accelerometer and microphone AdP¢asily manageable as well.

- Indoor Localization By using WiFi [103] and cellular triangulation to deterraithe loca-
tion, the first generation iPhone localization for indooasgs is quite accurate, as discussed in
Section 2.6.3. This is an important feature, for examplenfobile social networking applications
considering that people spend most of their time in indoocations.

- User Interface The iPhone experience is greatly enhanced by the CocoehTayer archi-
tecture [92] that enables a pleasant user experience. ddrigplemented by the powerful graphics
framework, currently makes the iPhone Ul one of the besemtasion layers of any mobile devices.

- Application Distribution Apple provides an efficient way to distribute third-parppécations
to the public through the App Store. Once the applicationtesn tested and approved by Apple,
the application is posted on App Store from where it can bentimaded and automatically installed
on any iPhone.

35

200 T T T 200

_ 256 _ . 1000 . .]
g 180 ¢ 1 512 —— g 180 ¢ 3000 —x— ‘
2 160 | | 1024 —=— 2 160 L 5000 —%— d
£ 2048 —o— E 10000 —s—
o 140 + 1 4096 —e— o 140 60000 —=—
E 10! s 8192 —e— E 10!
c 16384 —— c
S 100} 1 S 100
© ©
5 80¢ 1 € gt
o o
£ 60 w/ﬂ £ 60
3 3
S 40t b S 40
£ 204 o L oot
0 I: l‘i :'Y f 0 | L L L
3 6 S, % 8
0g,) 005700, 10000 000, 256 o oo, gy Y095 g, 16‘384
Number of samples in time FFT bins

(@) (b)

Figure 2.11: FFT computation time as a function of (a) the number sampléisne while varying the FFT
bin size (as shown in the legend) and (b) the FFT bin size wiaitging the number of samples in time (as
shown in the legend).

e Disadvantages

- Lack of daemon functionalityThe main drawback of the first generation iPhone is its ldck o
ability to run a third-party application in background moddis is enforced by Apple for security
reasons. This means that anytime the phone goes into slede anche user launches another
application, the currently running third-party applicatiis terminated. Consequently, any sensing
application cannot provide continuous sensor data feetgrgting just an intermittent data stream,
thereby limiting the effectiveness of the sensing applcatApple’s response to the lack of back-
ground capability is th@ush Notification Serviceoming in the next releases of the SDK. With the
Push technology, probes are sent by the Apple backend sewfgich serve as relays for Push mes-
sages sent by a sender host to a receiver iPhone. As theaeigdione is woken up by the probe the
user is asked by the iPhone OS whether to let the applicatioinrresponse to the probe message
or not. The latest iOS supports the application backgrouadenhowever some of the sensors, i.e.,
the accelerometer, are shutdown when an application isspughthe background. This limits the
accuracy of a mobile sensing application relying on a cowtirs stream of accelerometer data to
perform activity recognition.

- Short-range radio API limited capabilityWith the first iOS generation it was not possible to
have access to the Bluetooth or WiFi radio stack APIs and mheraeans to exchange information
with neighboring iPhones is through the iPhone networkilaglksvia the Bonjour service through
WiFi. The networking capability was therefore limited anded not allow developers to build
sophisticated pairing protocols. The latest iOS proposasieh more comprehensive and flexible
set of networking APIs.

2.6.3 Performance Evaluation

In this section, we report initial results from a number gpesiments aimed at evaluating the first
generation iPhone computational capability, battery tiiomaand localization accuracy by using the

36

Legend: S [
7h 20m iPhone: -
7h GPS: E (e
6h 57min - manual: @ ~

Hours

CenceMe running —+—
CenceMe not running —&— 1

5h 22min
Dartmouth
ansarn Lol Colilega

4h 37min

12 24 60 90) - @w - :
g]

Data upload rate (sec) { Google

(@) (b)

Figure 2.12: (a) Battery duration with and without CenceMe running witile iPhone screen saver is set
to off; localization accuracy for eight different locatmim the Dartmouth campus of (b) the old iPhone (no
GPS), and (c) the iPhone 3G (with GPS).

original iPhone model, i.e., the one without GPS, and theiilei3G, which instead mounts a GPS.
Computational Capability. In order to evaluate the processing power of the iPhone we ffast
fourier transform (FFT) algorithm, which is part of the CeMze software suite, and measure the
iPhone computation time. The FFT computation evaluatigrerformed during normal CenceMe
usage pattern [101]. The FFT we use is Kiss FFT [104], a wellknopen source high performance
FFT library. We choose the FFT as a means to evaluate the éRlnmter high computational load
since the FFT is a common tool used in inference techniqupkedpto sensor data such as the
accelerometer and audio data streams. As shown in Figuie thd iPhone computation time up
to 4096 FFT points is below 60 msec even for a large numbey,609000, of sampled events in
time. Many of the sensor data analysis algorithms make us& 2t 2048 FFT points calculation
which means that they could efficiently leverage the iPhooeimputational power. Large data bins
in time, up to 60000 samples in our experiment, could alsouite gfficiently handled by the FFT
on the iPhone in at most 200 msec.

Battery Lifetime. We perform some experiments to quantify the battery drathefirst generation
iPhone when running CenceMe compared to the baseline paageuwvithout CenceMe. We set
the screen saver to off so that the phone never goes to stamoithy.

37

Table 2.6: Localization accuracy for different places in the Dartnio@ampus - LegendC.S. = Cellular
Signal;A = Old iPhone accuracy (mlg = iPhone 3G accuracy (m; = Garmin GPS accuracy (m), = Old
iPhone-Garmin GPS localization difference (ifa); iPhone 3G-Garmin GPS localization difference (m)

Location WiFi C.S. A | B C D E
1| Computer Science Bld indoor good good 83 | 22| N/A | N/A | N/A
2 | Computer Science Bld outdoargood good 44 | 17| 14 | 29 | 36
3 Library outdoor good good 171 9 8 0 1
4 Library indoor good | mediocre| 13 | 5 | N/A | N/A | N/A
5 Golf course none good 759 | 17| 5 45 1
6 Engineering Bld weak | weak 95 | 17| 5 14 0
7 Main St. none| weak | 17947 | 11 5 4
8 The Green none good 323|147 5 24 2

The battery duration for different data upload rates whemc€®le is running is compared to the
duration when CenceMe is not running, as shown in Figure(2)12Vith the phone’s standby mode
off and running CenceMe continuously, the battery lifetspans between 4 hours and 37 minto 7
hours according to the upload rate. We then turn the screen kack on and set it to 5 minutes and
we run CenceMe with the following cycle: run for 5 minuteq,tlee screen saver go off, leave the
screen saver up for 5 minutes, wake the phone up for 5 minatesaon until the battery discharges
completely. In this way, for the same upload rates, we oldgiinone usage time (meaning time
available to play with CenceMe) between 4 hours 50 min andussh®20 min whereas the battery
overall lasts between 10 hours and almost 11 hours. Thiergatturation is similar to the duration
obtained with iPhone usage patterns comparable to the omer @xperiment running applications
different from CenceMe.

This is because the prevalent battery drain is due to the ifgone LCD screen rather than the
networking activity for data transmission/reception @ped by CenceMe.

Localization Accuracy. To evaluate the localization accuracy of both the first gatiean iPhone
(without GPS) and the iPhone 3G (with GPS) we carry out tHeviohg experiment: we walk in the
Dartmouth College campus with both the iPhone models andrmmiB&Trex GPS. We record the
geographical coordinates from the Garmin and the iPhoneekeat eight different locations. On
the maps in Figure 2.12(b) and Figure 2.12(c), referringpeetively, to the old iPhone and iPhone
3G, eight clusters are shown, each indicating: the locatianually tagged by the person carrying
the devices, the location reported by the Garmin, and thatilmt indicated by the iPhone. Since
the pre-iPhone 3G localization engine uses WiFi [103] arldilee triangulation, whenever either
the WiFi or the cellular coverage is poor the result is lowalaation accuracy.

This can be seen for locations associated to clusters 5 arfieBwvthere is poor WiFi and/or
cellular coverage. In case of clusters 1 and 4, which areointications where GPS performs
poorly, the iPhone localization is more accurate given igh Quality of the WiFi and cellular sig-
nal. Overall, since the small town of Hanover is not servediayy cell towers, which would allow
the iPhone localization triangulation algorithm to be maceurate, the iPhone estimates an accu-
racy between 13 and 759 meters, as shown in column A of TaBleHawever, the actual distance

38

difference between the iPhone and GPS reported locatiash@wvn in column D of Table 2.6)
is 45 m at most, indicating that the iPhone localization athm uses a conservative approach to
estimate its accuracy. The GPS boosts the localizatiorracgof the iPhone 3G, being particularly
effective where there is a lack of WiFi coverage or the callgignal is poor. This can be seen from
columns B and E of Table 2.6 where, respectively, the errimased by the iPhone 3G and the
localization difference between the iPhone 3G and GPS idanthhan the old iPhone model case.

2.7 User Study

Because CenceMe is designed to be a social network we needllieygnd simple measures of
system performance to best understand the utility of peoghdric sensing applications such as
CenceMe. Our goal is to bring CenceMe to the attention ofrgiatieusers, ask them to use CenceMe
and provide detailed feedback about their user experiepoedans of a survey. For this reason we
conducted an “operational” experiment. The experimentdooted over a three week period in-
volved 22 people. Participants were each given a Nokia N# the CenceMe software (including
ClickStatus) and a free voice/data plan. Users had semeragicounts and access to the CenceMe
portal. While some of the users were friends we placed alislisehe same buddy list as a means
to create some community. The pool of candidates pickediwttie population of students and
staff at our university was composed of 12 undergraduatiests, 1 research assistant, 1 staff engi-
neer, 7 graduate students, and 1 professor. The reseaistamtsand four undergraduates have little
computer science background. Sixteen participants areedeacebook users. Before discussing
the detailed experience of users, we summarize some résuttghe user study:

e Almost all of the participants liked using CenceMe and i@tfiees. One user wroteit’s a
new way to be part of a social netwdrk

e Facebook users are particularly active in terms of williegg to share detailed status and
presence information with their friends.

e Privacy could be a concern but users are fine with sharing phesence status as long as they
have the means to easily and efficiently control their pgvsettings.

e CenceMe stimulates curiosity among users. Users want tw kvftat other people are doing
while on the move.

e CenceMe can aid people in learning their own activity patiemnd social status.

A new way to connect peopleAlmost all the participants find the idea of providing andwie
ing detailed information about people they are close to ailimg, useful, and fun. In particular,
location, activity/conversation, the historical log o&therson’s presence, random images, and so-
cial context are the features that people like the most. paitern is confirmed in Figure 2.13(a),
where the cumulative participants’ feature utilizatiom étifferent hours of the day derived from

39

3000

[o2]
o

2500 |

Il Insertion
[IDeletion

al
o

2000 |

B
o

1500 -

1000 - 9
2R 2%
500 [T
° | 1]
GPS Random Am | Favourite 0 1 1 il [l

location photo hot hang-outs 0 2 4 6 8 1012 14 16 18 20 22 24
Feature Hour of day

Feature utilization
N
o

=
o

Number of operations
w
o

(a) Utilization distribution across the differen{b) Comparison between the number of random
features. pictures inserted into the database versus the num-
ber of pictures deleted.

~
o

HEl rortal
g 601 |Jclickstatus
S 5ot
S
S0
o
5 30
o
£ 20
S
|l hl\
ﬂﬂnﬂllﬂ W

o

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of day

(c) Comparison between the CenceMe portal and
ClickStatus usage.

Figure 2.13: CenceMe user study statistics.

the analysis of system logs on the backend is shown. It iavithat location information which
reveals where friends are is the feature most used by thieipartts. The random photos was also
found to be of interest because it can be used as a way to tggethen’s day as in a diary: “oh
yeah... that chair... | was in classroom 112 at 2PM”. The @hate often blurred, since they are
taken outside the control of the person, but they still séimeediary tagging purpose. Some of the
participants did not particularly like the fact that the teys takes pictures outside their control, so
they opted to turn that feature off by customizing their acy policy on the phone.

What is the potential CenceMe demographic?We believe that people-centric sensing ap-
plications such as CenceMe could become popular amond setvaorking application users, for
whom sharing context and information is popular. For manyheke users, privacy is less of a
concern than for others, as shown by their interest in plybtiablishing personal history in detalil
in blogs and on social networks. This tendency is also tagidid in Figure 2.13(b) which shows a
comparison between the cumulative number of random phosested into the database versus the
total number of photos deleted for different hours of the. dayce photos are uploaded users are
given the opportunity to selectively delete them from thetem.

Few participants (4 out of 22) disabled the random photoHerantire duration of the experi-
ment and others disabled it at different times of the day tetrtieeir privacy needs or the needs of

40

the people around them. In general, as shown in Figure 2,1tB@ number of non-deleted photos
available for sharing is much greater than the number ofteldlphotos. Most participants did not
mind having pictures taken at any time of the day and in randettings and then being shared
with all the other participants. Many of them were excitedhwy idea of guessing what their friends
were doing through the hint provided by random photos. Mageano CenceMe presence sharing
restriction was applied by the participants, who alloweslrtBensing presence to be accessible by
everyone in the group. Although some users stated that thag éoresee wanting to apply a pres-
ence sharing restriction policy under certain conditiomg).(if their parents had access), they felt
comfortable with the idea of others seeing their presencst ofdhe time.

Learn about yourself and your friends. “CenceMe made me realize I'm lazier than | thought
and encouraged me to exercise a bit moréhis quote is taken from one participant’s survey. Other
users expressed similar thoughts. Users view CenceMe gpdinadion that potentially could tell
them things that might be intuitively obvious, but are oftevisible in their lives due to familiarity
and repetition. Some examples are lack of physical actaitgt spending a lot of time in front
of a computer. Near-real time presence sharing and hiatgsitesence representation are ways to
capture peoples’ lifestyle and trends about activity, aloobntext (am | often alone? do | party too
much?), and location.

My friends always with me. The study highlights that the participants enjoyed retnigtheir
friends’ presence on the mobile phone with ClickStatus iditaah to checking the portal. The
average number of times per day they checked presence wa3 imes, where 3 is the standard
deviation. Figure 2.13(c) shows a comparison between tia¢ nomber of times presence is ac-
cessed through the portal or via ClickStatus distributeduthout the day. Although the number of
times the participants access the portal is larger than tisei of ClickStatus on the N95, ClickSta-
tus is actively used. This is clear from Figure 2.13(c), vehbie use of ClickStatus rises during the
time of day when people are presumably most likely on the nimeause they are going to class
(between noon and 6PM) or hanging out with friends (betwed&y &nd 11PM).

Overall, the user experience is positive. Because manyeohf thnjoyed using CenceMe, they
kept the CenceMe phone for a while after the end of the exgetimWe are currently working
on revising some of the components and improving a few archital elements in order to reflect
some of the valuable feedback from the participants. Spadlifj future revisions of the CenceMe
system will include:

¢ Animproved CenceMe software module on the phone that pgsltime battery life. Our goal
is to achieve a 48 hour duration without recharging the aevic

e Anenhanced version of the portal to provide finer grainedgasi policy settings as well as an
enhanced ClickStatus user interface to provide the usérmire powerful ways to browse
their friend’s presence.

e A shorter classification time for primitives and facts bessamany of the participants believe
that real time access to buddies’ sensing presence shooldebef the features of the system.

41

System architectural revisions are currently under camnaitbn to meet this requirement. A
burst mode for sensing may prove to be useful.

2.8 CenceMe Large-Scale Deployment

The smartphone’s programmability, pervasiveness and iggpwomputational capability, along
with the application distribution systems support (i.@ndor specific app stores) are contributing
to an explosion of smartphone-centered research acrossareanof interest to the UbiComp com-
munity: from gaming to social networking, green applicatipand mobile sensing. The application
distribution system support in particular (e.g., Apple Apiore, Android Market, and Nokia Ovi)
is a game changer for the research community because itesnidigl deployment of applications to
millions of smartphones in the blink of an eye and gives thgoofunity to collect very large data
sets from the wild as never possible before. By mining rieigé-scale data sets researchers will
be able to answer novel and exciting research questionevdisng, for example, the way people
use and interact with their mobile phones [105, 106], wittation-based social networks [107] and
green apps [42].

In this Section, we report on our experience from releasiegd@Me [14] to the public through
the Apple App Store. CenceMe is a social sensing applicdbosmartphone that was first im-
plemented on the Nokia N95 devices in 2007 and evaluated ra®ia small scale study [14].
Following this, CenceMe was ported to the iPhone and retkpsblicly in July 2008 when the App
Store was first launched. Since its release on the App StaneeBée has been used by over 9100
active users in over 95 countries. The goals of the iPhone&Me release are the following: i)
scale our project outside the confined settings of a resdalocand give the application a “global”
dimension; ii) understand how a mobile sensing applicationks in the wild without the direct
control of the researchers; iii) assess the interest of [petovard a mobile sensing application,
which, by exploiting the phone’s sensors to transparenfigrihuman activity and the surroundings
of the user, opens up new dimensions, in terms of content @vaty.

We describe the design of the iPhone CenceMe client and bdaked the challenges encountered
in building a mobile sensing application to be publicly us&tle discuss thedeploy-use-refirfe
approach we adopt in order to evolve the system design as fsetdback is collected. We describe
the software challenges and limitations that could impaetcapabilities of a global mobile sensing
application. When a mobile sensing application runs unradrin the wild there is no guarantee
that the event being inferred (having sensed it using the@lumboard sensors) is correct, since
there is no notion of ground truth. We propose a mechanistbtiasts the fidelity of mobile sens-
ing applications by relying on a multi-sensing modality aggzh to mitigate the effect of lack of
ground truth data.

It is important to point out that releasing an applicatiorhte public for research purposes requires
to be compliant with the ethic code, privacy, and securityst@ints that protect the users of the ap-
plication. Itis also necessary to follow the researchingtin or university ethics recommendations

42

from the IRB (Institutional Review Board) regulating usettal collection and treatment.

2.9 IPhone CenceMe

CenceMe is a social sensing application which integratéis papular social networking platforms
such as Facebook, MySpace, and Twitter to augment a persmmtext status by using the phone’s
onboard sensors [14]. By running machine learning algworstion the mobile phone itself over the
sensor data collected by the phone’s accelerometer, nionap bluetooth/wifi/GPS, and camera
and fusion techniques on backend machines, CenceMe infensan’s activity (e.g., sitting, walk-
ing, running) and social context (e.g., dancing, with fdgnat a restaurant, listening to music) in
an automated way. This information is shared within the @@sssocial circle automatically giv-
ing the user the ability to customize their privacy settitmgegulate what and where to publish the
sensing-based presence. In what follows, we describe théeature of the iPhone CenceMe client
(in order to meet usability, classifiers resiliency, andsprge the phone user experience in terms
of battery life for example) and backend (designed to besbagainst failures, bursty user access,
etc).

2.9.1 Client

The iPhone CenceMe client is implemented using a combimaticddbjective-C and legacy ANSI

C code. Objective-C is mainly used for the user interfacelémentation, to access the low level
sensors, the internal sqlite database, and to respect teltview-controller principle of iPhone
OS. C is adopted to implement the activity recognition éfaess(which relies on a decision tree
algorithm), and for the audio classifier (that determinesdirrounding audio level - noise, quiet -
or if a person is in a conversation). The audio classifier iggpsrt vector machine (SVM) technique
using the LIBSVM C library [108].

The client is responsible for: i) operating the person’sspree inference over the sensor data by
locally running the inference algorithms; ii) communicatithe inference labels to the backend;
iii) displaying the user’s and their buddies sensing presgactivity, social context, location), the
privacy configurations, and various other interface vielat @llow, for example, a user to post
short messages on their preferred social network accoume. classifiers are trained offline in a
supervised manner, i.e., taking large collections of kthelata for both the audio and accelerometer
modalities and using that data to train the classificatiomet®which are later deployed on the
phone. Although earlier versions of the iPhone OS did nopsttpmultitasking (i.e., the capability
to run applications in the background) the CenceMe cliemteisigned to properly duty-cycle the
sensing, inference routines, and communication rendazwatln the backend to limit the battery
drain of the phone when the application is active. Redudieghattery drain is critical to avoid
rapid battery discharges when the application is used, dithom that would negatively impact the
phone user experience.

43

d e p I Oy Available on the iPhone
/) D App Store

use

Figure 2.14: The “deploy-use-refifanodel adopted for the CenceMe large-scale deployment.

2.9.2 Cloud

The iPhone CenceMe backend, which is implemented on the Am¥#&eb Service cloud infras-
tructure [109], is comprised by a series of different vittomaachine images. Each machine is an
Amazon EC2 virtual machine instance running Linux whichviles a series of PHP and Python
based REST web service allowing multiple machines to be oseg together. Each image per-
forms a different role in the backend infrastructure and lb@sn designed to be initialized and
composed together to offer different operating points &t @nd performance. This allows us to
temporarily initialize different numbers of machines dfelient types depending on the existing or
expected user workload. It also allows us to manage the ¢asihaing the CenceMe service so
that we can provision additional machines (which incur fddal costs) only when user demand
requires it (for example, when a new model of the Apple iPhisrreleased and temporarily many
users try out our application, which causes us to reconfiguresystem).

The server side system is responsible for: i) storing uses@epresence information and allowing
other CenceMe clients restricted access to this data; lilighing this sensor presence information
to third party social network such as Twitter and Facebdgkniaintaining the CenceMe social net-
work friend link structure; iv) performing routine user rggation and account maintenance tasks;
and v) the collection of statistics about user behavior lastlthe client and backend side of the
system.

2.10 Large Scale Deployment: Lessons Learnt

In this section, we discuss the experience we gained by yiagl€CenceMe on the App Store and
having it used by thousand of users worldwide. Throughoatdévelopment and the evolution
stages of iPhone CenceMe we appliedlagloy-use-refifemodel (see Figure 2.14). According to

44

this strategy, after initial tests in the lab, the appliatis deployed on the App Store. Following this
phase, users start downloading and using the applicatibeir feedback and user experience over
time, submitted to us via a dedicated customer support ezhaiinel or the CenceMe discussion
board [110], trigger the application fixing and refinemermto@ss, in order to meet users satisfaction
and improve the application usability. In what follows, thesons learnt from the iPhone CenceMe
deployment are reported.

Information Disclosure. When leveraging an application distribution system sudha#pp Store

to collect data to be used for research purposes, it is veppiitant that the user downloading the
application is fully informed about the nature of the apglion and the data being collected, as
well as how the data is going to be handled. Full disclosumioh information is often required by
universities IRB and disclaimers should be made clear imgpication terms of service. Given the
sensitive nature of the iPhone CenceMe data, i.e., inferlatiels from sensor data, our university
IRB makes us add a different consent form following the teahservice page which explicitly
mentions the purpose of the application and describes thieenaf the data collected along with the
use we are making of the data. According to IRB, this extrp staeeeded because people do not
often read terms of service notes carefully, thus, a seceditated disclosure form is required. Of
course, by requiring a consent form through the involvenoédRB as often needed when carry-
ing out research involving human subjects, the cycle of alieation deployment becomes much
longer. The IRB might take months to approve a certain rebeairoject, and even so several iter-
ative steps may be needed in order to meet the IRB requiresm&his implies long cycles before
an application can be released. This extra time should entadto consideration by researchers
that want to carry out research at large scale through agtjglic distribution systems. The second
implication of adding an explicit consent form in the apation is that users might opt out from
using the application (as we verified with some of the iPhoeadeéMe users). This is because
people are not yet used to downloading research applicafiom a commercial platform such as
the App Store and they do not often understand the purpo$eatsearch. As a consequence, the
pool of users participating in the research might grow sjowl

Monetary and Time Costs. Moving research outside the lab for large scale deployntbintsigh
the App Store has also monetary and time related costs. yBiagiming user data, along with the
necessity to rely on robust and reliable backend serverst likely demand the support of cloud
computing services [109]. In this way, the researchershteaance job is greatly alleviated since
existing cloud services guarantee reliability and theitgbib rapidly scale to more resources if
needed. The flip side is that researchers have to be readgttirsthe subscription cost.

Itis also to be taken into account the time overhead needaditpot the application to new phone OS
releases (which often carry APl changes) in order to makepipécation able to transition through
different versions of the software seamlessly. Without thipport, users would not be guaranteed
a smooth usage of the application which could potentiallyitmpped with severe impacts on the
research outcome. Users might also ask questions and néexdgoided through the use of the
application. Researchers need to be ready to devote sorheiofilne to customer service support.

45

A prompt response from an application developer gives gtferlings about the solidity of the
application and the people supporting it.

Software RobustnessSoftware robustness and clean user interface (Ul) desigrbma foregone
conclusion. However, the effects of poor software desighigtvimplies little robustness of the
application) and poor Ul layouts should not be underestohaPeople downloading an application
from any distribution system expect the software to be mlsisple to use, with easy-to-navigate
Ul. If any of these requirements are not met, users mighel@osfidence in the application and not
use it anymore. As researchers, we might not have the Ul nlesidls often required to make an
application attractive. It is then important to collectdeack from domain experts that can guide
the researcher to a proper design of the Ul. We learnt ab@uisttue after a couple of iterations of
the iPhone CenceMe client. We modified the Ul design and tifereint navigation views by taking
into account users feedback and our own experience in usegpgp.

By dealing with software that needs to run on mobile phoresearchers have to pay great attention
to the impact the application might have on the phone peidioca itself. Phone manufactures often
guarantee that the user experience with the phone is nadiegiwvhen third party apps are running.
Hence, resources are reclaimed, namely RAM and CPU, whephthree OS assesses that there is a
need for it. Researchers have to make sure that the applicddies not take too many CPU cycles
and/or occupy too much RAM, otherwise the application mighshut down unexpectedly. This is
a particularly important aspect to be considered for apptias designed to run in the background.
Researchers that want to deploy applications at large beale to be ready to write code at near-
production level, in order to maximize the application ubigband robustness.

Although testing the application in the lab might not let yisicover all the possible glitches in the
code, extensive testing phases are required before sifgratt application to the distribution sys-
tem. This is important in order to minimize the likelihoodthusers will encounter problems with
an application and to reduce the chances that an applidatiejected during the screening process;
for example in the case of the Apple App Store. It should becddhat Android Market does not
screen applications making it more attractive in the casmuofe applications. One of the CenceMe
releases did not pass the screening phase because of a idgbflag mistakenly left in the code
causing the application to crash. As a result of this sillgtake the application was pushed to the
back of the application screening process queue by Applayidg the new release of CenceMe by
several weeks.

Hardware Incompatibilities. New phone models or the evolution of existing models couisent
hardware differences that could impact the applicatiorfoperance. We experienced this issue
during the iPhone 2G to 3G generation transition phase, evtier former mounts a different mi-
crophone than the latter. We started noticing a performainop of the audio classifier when the
same application was running on a 3G phone. The drop wasdayshe fact the audio classifier
for conversation detection was trained using audio sarmé&sly recorded with iPhones 2G. Since
the frequency response of the iPhone 3G microphone is éiffdrom the 2G model, the classifier
trained with 2G audio was not able to infer accurately 3G @uéfior a large scale application de-

46

veloper it is then important to realize these differencesnme to limit misbehaviors when people
replace their devices.

User Incentives.In order for users to use a research application they havavi® &n incentive and
enjoy it when the application is active on their phone. Iféhis no or little return to them, the appli-
cation might be used rarely with scarce benefit to the rebeartcome. In order to engage users we
include a feature in the iPhone CenceMe client natgcedMe IconMe allows a user to select an
icon that better represents their status, mood, and sufiogs and associate a 140 character mes-
sage to it. Such a message is shared with the CenceMe frindgated on the personal Facebook,
MySpace, and Twitter account according to the user's peafars. We found this microblogging
service an effective way to stimulate the use of iPhone Qdace

User Reviews.Users reviews through blog posts or on the applicationibigion review system
itself can be brutal. And the impact of such reviews may betieg for the application reputation.
In order to limit the likelihood people report something piéasant about the application, which
might discourage others from downloading it, the testingsghpreceding the deployment has to
be extensive as pointed out above. For example, at the veipriieg of the App Store launch
we thoroughly tested iPhone CenceMe on legacy iPhonesnagjailbroken — which have modi-
fied software to enable deeper interaction with the platftvam what possible with legacy phones.
It never occurred to us that jailoroken phones might inducexpected behaviors when running
our application. Some App Store reviews from iPhone Cencaiégs were reporting unexpected
crashes when using the application. After some investigative realized that the issue was present
only on jailbroken phones (the reviews were in fact frombjaken phone users) and caused by a
routine accessing the sqglite database. It is again veryrit@pioto point out that across-platforms
tests are needed in order to make sure the application istrobhis is a practice that is not usually
required for limited lab setting experiments, but necesfarlarge scale deployments and is again
a factor that impacts the duration of the research.

Software Limitation. Although sensors are being included in smartphones, the thRiccess them
and their behavior is not entirely designed to support neofénsing applications. An example is
the accelerometer APIs. Phones operated by Android OS anctent new iPhone OS4 support
multitasking and give the possibility to run applicatiomstihhe background. Activity monitoring
applications require continuous streams of accelerontiter. However, since the accelerometer
on modern smartphones is mainly intended to drive the userface (e.g., move from portrait to
landscape mode) the manufacturers opted not for deliveringlerometer data to the application
anymore when the app is pushed to the background. Althouglisth sound design choice from a
Ul standpoint because an application in the background doeseed an active Ul, it is not desir-
able for a continuous sensing application. Such a limitatias to be taken into consideration.
Lack of Ground Truth. As soon as a mobile sensing application is being used andédféa-
bels start converging to the backend, the question is: htabte that label is? Is the event being
inferred actually occurring? We do not have ground trutldence when the application operates
in the wild. One way to increase the trustworthiness of tha @ato randomly prompt the user to

a7

provide a label for the current inferred event. Even if thisgedure is sparse in time, it might allow
us to collect significant statistical evidence in the long. rlihe other option is to design and exploit
novel techniques that mine peoples multimedia conterd,,(microblog posts/tweets, video, pho-
tos, audio clips) as a means of seeking correlation betweesdamantic of keywords/characteristic
features of the multimedia content and the actual actiw¥e are currently investigating both the
possibilities.

2.11 Related Work

There is growing interest in the use of sensor-enabled mgifibnes for people-centric sensing
[7, 73, 9, 111, 4]. A number of diverse applications are emngrgIn [42], the authors describe
an application that determines pollution exposure indézepeople carrying mobile devices. A
micro-blogging service is discussed in [112] that uses tealsvices to record multimedia content
in-situ and shares this content in a real-time. In [51], wacdss the integration of the CenceMe
application with Second Life [113]. The use of personal sessreams in virtual worlds is a new
and interesting area of research.

Cellphones have been used to learn about social connetibfs3] and provide context-aware
communications using location information from cellulawers and manually configured prefer-
ences in the iICAMS system [115]. The iCAMS system allows sisemick the preferred method
of communication according to a person’s status and laedog., in person, email, home/work
phone). WatchMe [116] is a similar system that aims at chmptie best way to communicate with
buddies. WatchMe relies on GPS trace analysis to deterntie¢her a person is walking or driving,
and uses the phone’s microphone to infer talking and silet¢s. CenceMe differs from iCAMS
and WatchMe because of the rich context it provides aboutsopén an automated and transparent
way. In the same way CenceMe also differs from Twitter [1AF]application to publish text-based
status messages generated by users.

There is a large body of work on activity inference and modglising customized sensors
worn by people [118, 11, 76, 119, 19]. CenceMe differs froim Work because it implements the
activity inference algorithms on commercial mobile phongsdiscussed in this Chapter there are a
number of important design tradeoffs that need to be takersitcount when implementing always-
on people-centric sensing applications like CenceMe ottheffshelf mobile phones. Systems such
as SATIRE [22] also assume sensing devices with great déjebbeing embedded into “smart
clothing”. An interactive dancing project [120] requiresgple to wear customized sensors mounted
on shoes to track dancing activity. In [11] the authors disctheir experience building efficient
classification techniques on the Intel Mobile Sensing Btatf(MSP), a small form factor wearable
device for embedded activity recognition. The MSP platfésmquite powerful compared to many
cellular devices. The CenceMe classifiers have been tditoreperate on less capable devices than
the MSP while remaining effective.

Researchers have started leveraging commercial applicdtstribution systems to carry out

48

global scale research [121, 122, 107, 105] while identgyhallenges [123]. The authors of [107]
analyze the public available data from the Brightkite melsibcial network to study the behavior of
users. Results from the study of a large deployment througlpp Store of a game application are
reported in [121], while [122] discusses the findings fromabgl scale study of a HCI technology
deployed on the App Store. The authors of [106] and [105]gmethe results of medium and large
scale experiments to investigate smartphone usage attespectively.

2.12 Summary

In this Chapter we presented the implementation, evaluasind user experiences of the CenceMe
application, which represents one of the first applicatioreutomatically retrieve and publish sens-
ing presence to social networks using Nokia N95 mobile phoige described a full system im-
plementation of CenceMe with its performance evaluatiore diécussed a number of important
design decisions needed to resolve various limitations dha present when trying to deploy an
always-on sensing application on a commercial mobile ph@feealso presented the results from a
long-lived experiment where CenceMe was used by 22 usesstfoee week period. We discussed
the user study and lessons learnt from the deployment ofghkcation and highlighted how we
could improve the application moving forward. We discussadexperience from our large-scale
CenceMe deployment through the Apple App Store. We gainednaber of important insights
using new application delivery channels presented by amestnd supporting a large number of
users over a long period of time for what is essentially aaedeapp and not a commercial app — a
sort of Trojan horse of sorts, a research project masquegadi a phone application. Many impor-
tant questions remain in this new era. How do we collect afidate our research data when we
have limited control over users and lack real ground trutlvido we make sure we have a good
cross section of users to validate our study? Will app stocoesinue to allow academic researchers
to use their deliver channels to do research? If a reseagchegomes wildly popular how do small
academic labs respond to that in terms of financing cloucétrfucture and supporting potentially
100s of thousands of users? It is clear that the new envirohnepresents a fast way to try out
new ideas in the market place driving more and more innovatio essence, the app stores are the
digital equivalent of the petri dish — we can germinate negagland watch them grow or fade in
the real world, with real users, distributed across the dvorihis is a very exciting departure from
how we did research before app stores.

Many challenges were discovered during the CenceMe de@oisnThey range from the need
to design more scalable classifiers that efficiently opengtee wild, to the importance of addressing
inference robustness against sensing context and mohititythe necessity to find ways to validate
inferred labels collected from the wild. In the next chapterdiscuss a distributed and collaborative
inference framework to improve the robustness of mobilesisgnapplications. In Chapter 4 we
present a large-scale mobile sensing application for peaptl places characterization, where we
show preliminary results for a technique to validate infieeelabels collected from the wild.

49

Chapter 3

A Distributed and Collaborative Inference
Framework for Smartphone Sensing Support

3.1 Introduction

The continuing need to communicate has always pushed panjteent better and more efficient
ways to convey messages, propagate ideas, and share parsmnaation with friends and family.
Social-networking, for example, is the fastest growingmahreenon of the Internet era where peo-
ple communicate and share content with friends, family, aecgliaintances. Recently, researchers
started investigating new ways to augment existing chanoketommunication and improve in-
formation exchange between individuals using the comjoumalt and sensing resources offered by
sensor-enabled mobile phones (aka smartphones). Thesegalbeady utilize sensor data to filter
relevant information (e.g., location-based services)rovipe better user experiences (e.g., using
accelerometer data to drive smartphone sensing apphisatidcdowever, information about user's
behavior (e.g., having a conversation) and personal co(gex, hanging out with friends) is often
provided manually by the user. This naturally leads to tHieviong thoughts: what if the avail-
able sensors are further exploited to automatically inferous aspects of a person’s life in ways
that have not been done before? What if the characterizafitme person’snicrocosmogould be
seen as a new form of communication? We believe that as senabied mobile phones become
commonplace, they can be used at a personal-scale to endcugport communication and col-
laboration, to measure and improve task performance, aaléin the assessment of health and
wellness.

There is a growing research effort in using mobile phonesfier iinformation about people’s
behavior and their environment [71, 111, 124, 48, 14, 41, Ab¢se systems typically rely on pre-
trained models or classifiers, where the training data freemes of interest are acquired in advance.
It is often exceedingly hard to obtain a representativeningi set from which to build reliable
classifiers (e.g., samples of an individual’s voice in agible environments). As a result classifiers
tend to perform poorly. Furthermore, current approachesodtake advantage of increased sensing
density offered, for example, by the cloud of mobile phonesiad us. This cloud represents an

50

Evolution

Ss;k;“d

p\);ho:
A 4
%.

@

model A

Pooling

phone A

model A,B,C (‘Q
N phone C

(pron s (i

)
E model C.AB
) A
model BA,C

(b)

Collaborative Inference

2
L

(©

Figure 3.1: Darwin’s steps: (a) evolution, (b) pooling and (c) colladtire inference. They represent Dar-
win’s novel evolve-pool-collaborate model implementechaobile phones.

ensemble of in situ resources that can cooperate to boasihggmerformance, make sensing more
robust, and achieve a common sensing task in a more effiagiendcalable way.

With the rising interest in smartphone sensing applicatiwe believe there is a need to provide
mechanisms that maximize the robustness, accuracy, atabiita of these applications. In this
Chapter, we present Darwin, a novel collaborative reagpsyistem that is self-extending and uti-
lizes co-located mobile devices to achieve better accumadyscalability, at lower cost to the user.
As shown in Figure 3.1, Darwin combines three different cotafional steps to achieve its goal:

Classifier evolutionis an automated approach to updating models over time satlhih clas-
sifiers are robust to the variability in sensing conditionsimon to mobile phones (e.g., phone in
the pocket, in pocket bag, out of the pocket), and settingg, (roisy and loud environments). A
fully supervised learning method, where labeled exampia® fdifferent context are provided to
the system, would not be practical in this case since theg@bamer would continually have to pro-
vide labels any time an event is detected that is determimée in a different setting and context.
This simply does not scale and would be unacceptable to.ugénde self-evolving classification
models techniques have been investigated in the past [W25how the actual deployment of such
techniques on a real phone based system.

Model pooling is a novel technique which is designed to answer the follgvgjnestion: can
we reuse models that have already been built and possiblyeglyon other phones? This would
increase the system scalability because there would beatbtaeetrain classifiers for events which
already have classifiers trained to recognize them. Withipgomobile phones exchange classifi-
cation models whenever the model is available from anotheng, thus, allowing mobile phones
to quickly expand their classification capabilities; tratif a given mobile phone does not have a
model for a person or an event, there is no need for it to ceeatw classifier as it can readily ob-
tain and use another phone’s model. Note, that models caxchamged in-situ between co-located
phones or from servers over the network. In either case tie paoling process remains the same.

Collaborative inference combines the classification results from multiple phoneadoieve

51

better, more robust inference with higher confidence in émsisig result. After pooling, co-located
mobile phones all have the same classifiers. At this poigt¢ha run the same inference algorithms
in parallel and a final inference result can be obtained bybooimg the output from the different
phones. This allows the system to be more robust to degoadiatisensing quality experienced by
some of the phones (e.g., a person carrying the phone in thef)@nd take advantage of improved
sensing quality offered by others (e.qg., the phone is out@pbcket near the event to be sensed).

We show the performance of Darwin by exploiting the audio alibgl of mobile phones, in
particular, we show the benefit of applying Darwin to a speadeognition application using audio
sampled by the onboard microphone. We show the performaiite speaker recognition algo-
rithm on the Nokia N97 [126] and Apple iPhone [92] in diffeteettings and context when Darwin
and the speaker recognition application are used by eiginipe

The reason we select speaker recognition is not becauseteralito design a new speaker
recognition algorithm (there is a considerable amounttefdture on this topic [127, 128, 129, 130,
131)), but to show how Darwin improves a mobile sensing apfilbn inference quality.

Darwin is founded on an opportunistic sensing paradigmiiere the user is not an active
participant in the sensing activity (i.e., actively takiagensor reading). In this case, sensing hap-
pens automatically and continuously when the system détesrhat the sensing context is right
for sensing. Darwin can be thought of as a sensing systemngimm the “background mode” of
the mobile phone without any user intervention in actuassen The key contribution of our work
is to show how Darwin can boost the inference accuracy of l@gnsing systems by applying
distributed computing and collaborative inference corisap these systems when devices come
together opportunistically. We conjecture that Darwinlaggpto other smartphone sensing appli-
cations and systems that use the microphone as an audia $é6sd1] would also see similar
performance improvements because audio sensed data iisveetasthe characteristics of the en-
vironment (e.g., noise, other people speaking, etc.) ansloseontext of the phone (e.g., in or out
of pocket for example). At the end of the Chapter, we also show Darwin could be integrated
with a mobile social networking application, a place dismgvapplication, and a friend tagging
application.

Today, smartphone sensing applications mostly exploiGR8, accelerometer, digital compass,
and microphone sensors for personal sensing. In the fusomartphone sensing will be societal-
scale supporting a broad set of social, health and envirotahepplications, such as, tracking
pollution, population well-being, or the spread of disedsés also likely that more sophisticated
sensors will be embedded in phones, such as, pollution arglality sensors [35] and galvanic
skin response (GSR) sensors. The sensing and inferendty qiighese applications is affected by
many factors. Importantlyphone sensing contesite., the position of the phone on a person’s body
in relation to the sensed event, is challenging for thesegingeapplications. A phone in the pocket
or bag might perform poorly when sensing air quality or awients. Classification models are also
limited by the quality of the trained data and their inakilib capture different characteristics from
the data in different environments. Darwin’s noe@blve-pool-collaboratemodel is designed to

52

Sensing Darwin Applications

-l B - Social Context
- Air quality/ - Audio Fingerprinting
pollution sensor | == - Pooling — - Pollution Monitoring
iFi - Collaborative gl ngerpnnting
- GPS/WiFi/Cellular e - Image/Video
- Camera manipulation

Figure 3.2: Examples of application domains Darwin can be applied toiadgontext (e.g., in conversation,
in a meeting) and ambient audio fingerprinting using the apbone; pollution monitoring leveraging the
phone’s pollution sensor; radio fingerprinting for locatiobn with GPS, WiFi and cellular triangulation; and
applications exploiting the phone’s camera.

provide a foundation for a broad family of existing and enmeggensors and applications, as shown
in Figure 3.2. To the best of our knowledge, Darwin represéms first system implemented on a
number of mobile phones that can evolve, pool, and enablgeration providing robust, efficient,
and scalable sensing.

The structure of this Chapter is as follows. Section 3.2 gessthe detailed design of the
Darwin system, followed in Section 3.3, by a discussion oéehhique introduced to infer the
phone sensing context. In Section 3.4 we discuss privacyraatlissues. Section 3.5 presents the
system implementation and performance evaluation of Deapplied to a proof-of-concept speaker
recognition application. Following this, we discuss a nemtif other sensing applications built on
Darwin and then discuss the related work in Section 3.6 awtid®e3.7, respectively. Section 3.8
concludes with the chapter summary.

3.2 Darwin Design

In this section, we present the detailed design of the Dasyétem including the use case speaker
recognition application.

3.2.1 Design Considerations

The design of Darwin is governed by the limited computatiaesources on the phone to run
computationally intensive machine learning algorithmd by mobility issues. In what follows, we
discuss these motivating factors and the design decidastdress them.

The main goal of mobile phones is expanding way beyond jugingghone calls. Compared
to early mobile phones, modern smartphones are also pdwedgrammable platforms with, at
this writing, up to 1GHz processors and 1GB of applicationmagy [132]. While smartphones
have increasing resources, running continuous sensirigaipns presents a number of important
challenges. These range from the design of efficient dutlirgy algorithms that can maintain
acceptable fidelity and time between charges, to the neegsto more intelligence to the phone in
terms of classification algorithms without impacting thermsxperience (e.g., freezing the phone,

53

slowing the Ul, blocking calls). Machine learning algorik that run on the phone to process
sensor data should be implemented in an efficient and ligghwenanner. Darwin is designed to
reduce on-the-phone computation based on a split-levepuatation design [14], offloading some
of the work to backend servers (as discussed in Section Hit¢ wading off the cost for local
computation and wireless communication with backend serve

Users carrying mobile phones also presents a number ofdgalé for continuous sensing ap-
plications that have to operate under real-world mobiliyditions. The context of the phone is
challenging to sensing. Users carry phones in many diffavags. Therefore, when a phone senses
an event, its context (e.g., infout of the pocket, in/foutlihg, etc.) will impact the sensing and in-
ference capability of the phone. Another challenge thatilitpbreates is that the same phone may
sense the same type of event under different conditions, (baysame person speaking in a quiet
office or noisy restaurant). This leads to poor inferencerdup of co-located phones running the
same classification algorithm and sensing the same evamnéraind space could compute different
inference results because of the context problem and dighitonmental differences, as discussed
above. In essence, each phone has a different viewpoineafaime event. These real-world issues
arise because sensing takes place out in the wild — not in taotled laboratory setting — and is
governed by the uncontrolled mobility of users.

Darwin exploits mobility and addresses these challengessds classifier evolution to make
sure the classifier of an event on a phone is robust acrossaiff environments — works indoors
and outdoors for example. Extracting features from sensgedt® in order to train a classifier is
costly for a mobile phone in terms of computation and timerviaallow phones to pool classifi-
cation models when co-located or from backend serversigpldically reduces the classification
latency because a phone can immediately start to make ifesavithout the need to train classi-
fiers. Different phones running the same classifier and sgiise same event are likely sensing the
event differently, as discussed above. Darwin uses cotgive inference to compensate for this
difference, boosting the final inference result. Darwinleis mobility because it is designed to be
opportunistic in its use of classifier evolution, poolingdacollaborative inference.

3.2.2 Darwin Operations

In what follows, we present a high level description of howia operates(1) each mobile phone
builds a modéi of the event to be sensed through a seeding phase. Over tieeriginal model

is used to recruit new data and evolve the original model Fsgere 3.1(a)). The intuition behind
this step is that, by incrementally recruiting new samplle, model will gather data in different
environments and be more robust to environmental varigtiofhe phone computes the feature
vectof locally on the phone itself and sends the features to a backerver for training. This is

1A classification model is represented by a mathematicalessgion with parameters. For example, in the case of a
Gaussian classification model, the model is identified by asGian function with mean and standard deviation as the
parameters. Refer to Section 3.2.5 for further details.

2A feature vector is a vector of numerical elements représgiain event. For example, in the case of activity recog-
nition applications that use the accelerometer, two featactor elements often used are the mean and standardateviat

54

because the feature vector computation is quicker and nmarg)e efficient than the training phase
of a machine learning algorithm such as a Gaussian Mixturde¥i@GMM), which is the technique
we use (it takes approximately 2 hours to train a GMM with 1&osels of audio from experiments
on the Apple iPhone and N97)2) When multiple mobile phones are co-located they exchange
their models so that each phone has its own model as well @etlreated phones’ models. Model
pooling, as shown in Figure 3.1(b), allows phones to shag& #nowledge to perform a larger
classification task (i.e., in the case of speaker recognitgming from recognizing the owner of
the phone to recognizing all the people around in convenspti After models are pooled from
neighboring mobile phones, each phone runs the clasdificatgorithm independently. However,
each phone might have a different view of the same event,-different phone sensing context. For
example, one of the phones might be inside the user’s podiketaas another one might be outside,
or one of the phones could be closer to the sensing event thanso(3) Collaborative inference
exploits this diversity of different phone sensing contéetvpoints to increase the overall fidelity
of classification accuracy, as illustrated in Figure 3.1(c)

3.2.3 Speaker Recognition Use Case

We choose speaker recognition as our proof-of-concepicaioin because the audio modality is
generally sensitive to environment and phone sensing xoatel we believe the findings from
this application will generalize to other classificatiomlplems such as in [40, 41] or pollution for
example [35] for which the phone sensing context is impartdime speaker recognition applica-
tion attempts to determine the identity of a speaker by aiadythe audio stream coming from a
microphone. The recognition process includes the follgvateps:

Silence Suppression and VoicingThe system first eliminates audio chunks that contain sélenc
or low amplitude audio and then runs a voicing routine to reenthhe chunks that do not contain
human voice. By focusing only on chunks that are likely totaom human speech we reduce
the false-alarm rate of the classification system. The sllesuppression filter works on 32 ms
of audio at a time and discards portion of the audio whose muedin square (RMS) value falls
below a threshold7. The threshold7 is determined experimentally under various conditions,
for example, recording voice using the mobile phone in gudbor environments, on a sidewalk
of a busy road, and in a restaurant. The voicing is performettdining a GMM using several
hours of non-voice audio captured in various conditiong.(ejuiet environments, noisy from car
traffic, etc.) and discarding the audio chunks whose likaihfalls with a +/- 5% from the non-
voice likelihood. This threshold is also determined expertally and found to be accurate for
many different scenarios. More advanced techniques cautbbsidered in future work such as the
voicing scheme proposed in [133].

Feature Vector. The feature vector consists of Mel Frequency Cepstral Goefiis (MFCCs)
which are proven to be effective in speech audio procesdi@g,[135, 136]. We use coefficients 2
to 20 and skip the first coefficient because it models the DCpoorant of the audio.

of the accelerometer readings.

55

Sensed Event i Sensed Event

— Model 3 Evolution Algorithm Recruit
Training < ; —>| likelihood estimation + <
Algorithm Baseline | baseline likelihood Do not
! matching Recruit
(a) Training ‘ (b) Evolution

Figure 3.3: Darwin’s (a) Training and (b) Evolution steps.

Speaker Model Computation.Each speaker is modeled with a mixture of 20 gaussians (hence
a 20-component GMM). The reason we use GMM is because GMMitigts are widely used in
the speaker recognition literature [137, 138]. An initipbaker model is built by collecting a short
training sample — 15 seconds in our current implementatitthen a user installs the application
on their phone they are asked to provide a sample of voice dgjing loud text displayed on the
phone screen. In Darwin, the initial model evolves to captine characteristics of the different
environments where the person happens to be located.

Each speakers model M; corresponds to a GMMY i, i = 1.N (whereN is the number of
speakers), and GMMs the model trained and evolved by phoRefor speakeri®. A GMM,; is
characterized by the tuplel; = <p;,Zi,w;>, wherey; is the & x 2 multi-dimensional array
containing the mean values of the gaussian distributi@ns the number of components ari#lis
the number of dimensions of the GMM modzgl.is the2 x 2 x & multi-dimensional covariance
matrix, whereaw; is the 1x &2 array of weights for each gaussian component. For a detailed
discussion of a GMM for speaker identification see [137]. Diaewin implementation useg =19
(i.e., the number of MFCCs coefficient employed) a#td= 20. We fix the number of components
to 20 because the larger the number of components, wheregoo@mt represents a single gaussian
within the mixture, the more accurate the model is. At theeséime as the number of components
increases, the computing cost for the model increases. tFamplementation, we experimentally
verify that 20 components provide the best tradeoff betwammputation cost and classification
accuracy.

Speaker Inference. In Darwin, speaker inference operates in a collaboratiwk distributed
manner. The inference is collaborative because all the lmphones contribute to the final results
by communicating the confidence level associated with icedadio with other mobile phones
in the neighborhood using the short-range radio, such ast&th or WiFi. The inference is
distributed in the sense that the final inference result itvelg locally on each individual mobile
phone without relying on any particular external entity. $kiew how collaborative inference boosts
the performance of the speaker recognition application.

56

3.2.4 Classifier Evolution
Initial Training

The initial training phase is intended to be short so thagttidication can be used immediately by
people without requiring a prolonged initialization pha&iearly, a short training data set implies
a less accurate classification model. For this reason efthielf speaker recognition applications
[139, 130, 140] use large number of samples typically sévers of seconds of speakers’ voices
in order to achieve acceptable recognition accuracy. Insgstem, the initial speaker model is
just the starting point and the model is used to recruit naimitng data and evolve the model on-
the-go without additional user intervention. For appl@as other than speaker recognition, the
initial model of the event to be sensed is provided by theesgstiuring the deployment phase.
The evolution algorithm is designed to be applied to diffiérgensing modalities other than audio,
i.e., air quality sensing, etc. The initial training phasmsists of taking a sample or seed of the
sensed data and using half of the data to build the model. &haining half for building a baseline
likelihood (BL) as shown in Figure 3.3(a).

During the initial training phase, a person is asked to tatk her phone until a voicing audio
stream of 30 seconds is collected by the mobile phone. ThelBrseconds of the training set are
used for training purposes and the remaining 15 seconds édseseline for the classifier evolution
technique, as discussed in Section 3.5. The raw audio streegived from the microphone is first
passed through the silence suppression and voicing fitter;, tthe training and baseline audio are
both fed into the MFCCs extractor. The MFC@8 computed from the training audio form the
feature vector that is used to build a GMM of the speaker. Tdselne audio is used to extract
MFCC22s€ and to determine the BL that is used to recruit new audio sasngls discussed in
Section 3.2.4. The baseline is computed only for the modlttie phone trains, which, in the case
of speaker recognition, is the model of the phone owner voice

Evolution

An important challenge in training classifiers is to obtaiffisient amount of labeled data for su-
pervised training. Data labeling is tedious and expenginkraal-time labeling is seldom practical
since people are averse to being interrupted in order td dthe. In essence, labeling data does not
scale.

Therefore, machine learning algorithms running on mobliergs can not fully rely on su-
pervised learning strategies. In contrast, a fully unsuiped learning process without any human
intervention can often latch onto idiosyncrasies of theadatd is not guaranteed to model the
classes the user might care about. Darwin takes a diffemrbach by using a classifier evolu-
tion algorithm on mobile phones which uses a simple semgsiiged learning strategy [125]. We
show that such an approach can be effective in boosting tiierpence of the speaker recognition

3We associate one speaker to a single phone. Whenever thesjgaisingn phones we would have different
GMM models, one per phone for the same speaker.

57

system. Darwin’s classifier evolution revolves around # that mobile phones create different
classification models for different environments if exigticlassification models do not fit those en-
vironments. When the speaker recognition application dicayts, the speaker’s voice is sampled
in a quiet environment to build the initial model for the owioé the phone (15 seconds of voicing
audio). During runtime, if the likelihood of the incomingdia stream is much lower than any of
the baseline likelihoods corresponding to the differentiei® on the phone, then a new classifica-
tion model is evolved. The classifier evolution algorithnmgoises the following steps: (i) obtain
the likelihood for a 96 ms incoming audio chunk; (i) comp#re maximum likelihood estimator
(MLE) result with BL for models already existing on the phofi@) recruit the new audio as part
of the training data, if necessary; (iv) re-train the clasation model; and finally (v) compute the
new BL, which is the likelihood of the original baseline pthe newly recruited data. The classifier
evolution algorithm is detailed in Algorithm 1.

Comparison with BL. If L is the number of classification models for different envinamts,
the Likelihood,ey is compared with Bl, Vi, i=1.L. At the beginning, the phone contains only
BL1, which is derived from the initial training data set. Uikelihood,e,, falls between a +/- 3%
interval around one of the Bl .then that Bl.is used as the reference BL for the environment where
the speaker is situated. We determine the 3% threshold iengretally in different settings and
this value is the one that best generalizes to differentrenmients and with the best performance.
Because the threshold is derived for a set of environmentravheople spend most of their time
(e.g, quiet indoors, outdoor along a sidewalk of a busy sti@®d in a noisy restaurant) we are
confident that this threshold would extend to other simitasirenments.

After having determined which model to use, the absoluteevalf the difference between
Likelihood,eyw and BL is recorded. The vectorecDiff holds these differences for each new au-
dio chunk. The mean and standard deviation of the elemeneciDiff are then calculated.

Data Recruiting and Model Re-Training. New data is recruited for re-training if the fol-
lowing two conditions hold:i) the standard deviation of the elementsvactDiff, when the new
difference is added, oscillates outside a +/-5% boundasyrat the standard deviation calculated
before the new difference is addedviecDiff; andii) theLikelihood,ey is greater or equal than (BL
- mear{vecDiff}). The first condition ensures we are recruiting only voiceadhat differs from
the current model and the second normalizes the likelihoitid iespect to the mean. As new data
is added to the training set, the inference mddslre-computed and a new Bis calculated by
adding the audio chunk to thmseline audimf modeli. The recruiting stops when the likelihood
stabilizes inside the +/- 5% boundary because convergsneached.

As a product of the classifier evolution algorithm, differefassification models are automati-
cally created for different environments and locally stboa the phone. We prove the effectiveness
of our algorithm by running the speaker recognition applicaand Darwin system in three dif-
ferent environments, that reflect common places people liechselves. In our experiments, three
models are automatically created. In our speaker recognipplication each model uses 63KB
of storage space and approximately 500KB of storage forrtiming data for each model, which

58

Algorithm 1 Pseudocode for the Darwin classifier evolution &orithm running on node i.
NumEnvType— number of environments for which a model is defined.

while there is a new incoming audio chudk

ComputelLikelihoothew
Comparelikelihoodey With BL;j, Vi, i=1.L
if 3 j € {1..NumEnvTyp¢ s.t. Likelihoodew is within +/-3% BL; then

{The phone has a baseline for the environent
BLcomp<— BLJ
environmentType— |

else

{The phone does not have a baseline for the environment
BI-comp<— BL1
environmentType- 1

end if

LikelihoodDifference— | Likelihoothew - BLcomp|
Add LikelihoodDifference torecDiff

meanDiff — meanyecDiff)

stdDevDiff — stddevyecDiff)

if ((stdDevDiff < (previousStdDev 5%) OR (stdDevDif f > (previousStdDew 5%)))
AND (Likelihoothew > BL comp- meanyecDiff)) then

Recruit new training data fanvironmentType
Calculate new model faenvironmentTy pe
Add data tobaseline audi®mf environmentTypenodel
Calculate new Bl

end if

end while

includes the initial training set plus the fraction of datamuited as the model evolves. The overall
storage requirement for a single speaker with three diffezavironments is-1.8MB. This amount

of storage is reasonable for modern mobile phones becaggbdlve several gigabytes of persistent
memory and up to 1GB or more of application memory. Under nfiortéed memory constraints
the number of classification models for the same speakerautld other speakers could be setto a
maximum and the models arranged according to a circulaebpfflicy. As the number of models
in the buffer exceeds the buffer capacity, the oldest mootaiéd be removed to accommodate new
models.

3.2.5 Model Pooling

Model pooling is based on the simple premise of sharing ifleason models that have already been
built and optimized by other mobile phones. It is a simpleditective way to increase classification
timeliness by minimizing the inference latency. Model poglboosts classification scalability,

59

accuracy, and speed by providing a mechanism for fast éaptm of existing models by mobile
phones rather than building classifiers from scratch therase Model pooling boosts classifiers
scalability because models are not required to be trainaddttiple events, but just for those events
the mobile phone is most likely to be exposed to. For exaniplihe speaker recognition case the
percentage of time that the phone owner’s voice is captimechuse of conversations with nearby
people or phone calls, is greater than the percentage ofdimether speaker is captured. In this
case, it would be possible to accurately re-train and refuee time, using the evolution algorithm,
only the phone owner’s voice model rather than everybody®l®ice model. Mobile phones can
pool models — voice models in the case of speaker recognitibom other co-located phones for
events that they do not have a model for. These models arigyraadilable, usable, and require no
extra training steps. Model pooling does not necessarityiobetween co-located phones. Models
can be pooled from backend servers too. Assume a partichtarepbuilds a sophisticated audio
inference or pollution model of an area [141, 41, 35]. Pha@sgeo-tag models and upload them
to backend servers. From this point on other phones movinghiese geo-tagged areas do not have
to wait to generate their own models. They simply downloadieffrom a server if available and
start making inferences.

In order to formalize model pooling, € be a mobile phoneM, be the model derived and
optimized for a certain event by, andM; be the classification models individually derived and
optimized byN other mobile phoneB wherei =1 .. N. If K of these mobile phones are co-located
with P, following the pooling phas® would have its own mode¥, and modelsvi;, wherei € {1
.. K}. Each modeM,; is stored locally byP in order to be used again without the need to pool them
by phoneR, unless the model has been evolvedrayln that case, nodB would announce to its
neighbors that a new model has been computed and is readyptmolel. As a result of the model
pooling algorithm, all phones receive the classificatiordeis of all the other phones at the end of
the model pooling phase.

After nodeP has pooled a classification modd| = <py;,Z;j,w;> from nodeR, nodeP will
replaceR’s classification modeM; only if B announces a new classification mot#I®". NodeR,
determines that it is time to announce the new classificatiodelM"*" when the evolution of the
model is complete.

3.2.6 Collaborative Inference

Collaborative inference is designed to boost the classificgperformance by taking into account
the classification results of multiple phones “observingg same event instead of relying on only
individual classification results. The idea behind colla@boe inference is as follows: given that
an event could be sensed by multiple, distributed but catémt mobile phones, Darwin leverages
the classification results of individual phones to achiegttds accuracy. The hypothesis is that
we can take advantage of the multiple sensing resourcesciau event anéxploit their spatial
distribution and context diversityin the case of speaker recognition, when a person is talkitig

a group of people, the phones of the other people would pidkeppeaker’s voice with different

60

characteristics. Some phones could be in pockets, otheesabip belt or closer to a source of
event than the other phones. In this case, if the applicagtes only on each individual phone’s
classification, the speaker classification accuracy woelddor when the phone sensing context is
not good (e.g., in pocket or near a noise source) in relatiohe specific event. The same reasoning
holds for pollution measurements using mobile phones.

Following the pooling phase, each phdheontains the other phones classification modi&ls
wherei € {1 .. K}, andK is the number of neighbors. Each phdheuns the inference algorithm
in parallel using the common set of models. The fact that teatdas classified by multiple phones
using common classification models and that these phonesbma&yposed to different contexts
(some of which are better than others) can lead to higheracgwhen the results are combined.
The collaborative inference phase breaks down into thr&tendt stepsi) local inference operated
by each individual phoneij) propagation of the result of the local inference to the nedgimg
phones; andi) final inference based on the neighboring mobile phones lotalence results.

Local Inference

During the local inference phase each node individuallyraies inference on the sensed event us-
ing its own inference model of the event and the inferenceaisoglooled from other phones. The
goal is to locally derive the confidence level (or likelihdad the inferred event in order to be able
to communicate this confidence level to neighboring phori&g.having the confidence level of
each phone sampling the event, all the phones are able tdeucotlaborative inference step to
compute the final inference result. In order to operate bolative inference, the phones must be
time-synchronized because they need to perform inferentkeosame event at the same time. We
rely on the fact that mobile phones support time synchrdioizahrough the cellular infrastructure.
We measure a time synchronization error between four iPheyechronized through the cellular
network of 500 ms. If the error is larger than 500 ms we use sd@ynchronization approach. One
of the phones (randomly picked) sends a broadcast messagje, when received by all the neigh-
bors at the same time, triggers the sampling phase. Afténfpaeceived this broadcast message
phones are synchronized.

Following the audio signal sampling and filtering, the stnéa divided in 96 ms long chunks
MFCCs are extracted from each chunk. At this point, a maxirtiketihood estimation algorithm is
run in order to verify which of the models best fits the audiargh To avoid having the maximum
likelihood estimator running through too many pooled megdethich could potentially be costly in
terms of computation for a mobile phone, the estimator oafisithe models of the phones detected
in the neighborhood. Neighbor detection is performed ushngyt-range radio technology, such as,
Bluetooth and WiFi.

In order to increase the classification accuracy we feed thgimmum likelihood estimation
result into thewindowingblock. After the windowing step the local classificationuiess derived.

4We use 96 ms for each audio chunks to make it a multiple of thE®Binning size of 32 ms. This multiple makes
the duration of the audio chunk small enough to maximizeiktgithood of capturing just one speaker at a time.

61

If the maximum likelihood estimator returns that iheth audio chunk belongs to evet the event

E is deemed to be true if and only if the following two conditiohold: (i) eventg, i.e., a certain
speaker speaking, is detected at least once in a window gingpthe previous two audio chunks;
and (i) the classification accuracy confidence is at lea® Bger than the confidence for any other
events. The reason for the first condition is to guaranteeatiiaice sample is included — since audio
chunks are 96 ms long, if a speaker is detected at least twa&vindow of time of duration 96 ms
x 3, then we have better confidence that we are really capttiiatgspeaker. A larger window size
would increase the classification latency and after expartation we determine that a window size
of 3 best suits our system, which requires near-real timgsiflaation results. The reason for the
second condition, having determined the 50% thresholdrerpatally, is to dampen the impact of
false positives. The pseudo-code of the local inferenceritligns is shown in Algorithm 3. The
locally inferred speaker ID is associated with the classiiioim model that best fits the audio chunk
following the windowing policy. Because a phone computesitfierence confidence for each of the
K models as reported in Algorithm 3, the result of the locagiahce takes the form of the following
vectorLl ’15 = {confidenceSpeakgrconfidenceSpeaker.. , confidenceSpeakgy, where the
subscript notation s indicates that the vector contains the inference resultsdeakers 1 tsand
the superscript index indicates that the vector is generated by npd€onsider for example, that
three nodes (N Ny, and N;) are co-located and running the speaker recognition adfgit. If S,

S,, and S are the speakers associated with nodgsNy, and N; respectively, and assuming 8
actually speaking, then an output for the vectors could, for example, bé&il }‘2.3 = {0.65, 0.15,
0.2}, LI{,3 =104, 05,0}, andLI},5 = {0.7, 0.2, 0.3. The reason of blexpressing lower
confidence about speaker 1 could be caused by the fact théierpbbne N may not have a good
sensing context.

Local Inference Propagation

Following the local inference step, each mobile phobeoadcasts the result of its local inference
(i.e., the vectoL| ') in order to give neighboring phones the ability to move ®fihal step, i.e., the
final inference. A time stamp is associated with vectdrsin order to align local inference results
in time. A weight is also associated with vectarid. The weight is an indication of the quality of
the local inference. For example, assuming the mobile pldetermines its context (e.g., in or out
of the pocket) and is running an audio or pollution sensinglieation [35], then the value of the
weight is small or large when the phone is in or out of the poadlespectively (for a discussion of
how to determine the sensing context see Section 3.3). fimeraLl ' vector with a small weight
indicates that the mobile phomés not in a suitable sensing context and has less influencheon t
final inference phase.

The phones broadcast their local inference results at teetma local inference is computed.
The local inference is computed right after an audio sangpteliected. Consequently, if the phone
polls the microphone everx number of seconds, the local inference is computed and bagset
everyA seconds as well. For example, a local inference broaddastfadHz implies receiving the

62

Algorithm 2 Pseudocode for the Darwin local inference algoithm running on node i using
K pooled models. The number is determined by the number of detected neighbors. The
locally inferred speaker ID corresponds to the index of the nodel best fitted by the audio
chunk following the windowing policy.

while there is a new incoming audio chudk

{Go through all the classification modgls:

for j=1toK do
arrayLE[j] < likelihood estimation for audio chunk
end for
Retrieve the max likelihood from arrayLE and the associatddx indexMA.
Retrieve the second larger confidence from arrayLE and $eciged indexSMA.

{Windowing policy}
if (arrayLE[indexMA —arrayLE[indexSMA> 0.5) AND ((indexMA== previousMAX OR
(indexMA== previousPreviousMA)X then

locallylnferredSpeakes indexMA
previousPreviousMAX— previousMAX
previousMAX «— indexMA

end if

end while

local inference results, hence, computing the final infeeeevery second. Clearly, the higher the
broadcast rate, the faster the final inference (see Secdd)3We do not propose any specific local
inference broadcast rate, since this depends on the ajimticaquirements. Rather, we show the
cost of transmitting a single confidence level from whichttital cost for each specific transmission
rate is derived (see Section 3.5.4).

Final Inference

The goal of the final inference phase, which follows the lactrence propagation, is to compen-
sate event misclassification errors of each individual thegbhone achieving better classification
confidence and accuracy of sensed events. Mobility and xioatfect the local inference result,

sometimes such that an event could be misclassified. Fonthieriference, Darwin combines the
local inference results derived by individual mobile phetigat are spatially distributed in the area
of the target event. The technigue used to perform the fifialénce is to find the inferred speaker
(IF) that maximizes the joint probability as in Equation.3.1

IF = argmaxProb(g), Prob(s), .., Prob(s\) } (3.1)
j.ie{1.8)

whereK is the number of co-located phones that have been contriputith their local in-

ference,Sis the number of speakers, aﬁdob(%') is the probability that speakgris detected by
phonei. This operation is facilitated by the fact that the propeasfyindependence between the

63

differentLlI ’15 vectorsY|, | = 1..K, is verified since each node (i.e., phone)iN= 1..K, performs
independent event sensing. Given the property of indepmegeve can re-write Equation 3.1 as:

K . K . K .
IF = arg ma>{_ LI '1,” LI '2,..,” LIS} (3.2)
i,je{1..s} i= i= i=

Since each node;Nhas the vectorkl Ii..s after the local inference propagation phase (whete k
{1,..K}), each node Ncan compute Equation 3.2 to produce the final inference.dardo assure
that Equation 3.2 is calculated using the local inferenselte of the same event, Equation 3.2 is
computed only over the local inference results that arenatigin time. For each computation of
Equation 3.2 only the local inference results which diffetime for at mos® ms are considered.
In our implementation, we sé= 150 ms, which we determine experimentally to be the bestkval
The largerd, the bigger is the likelihood that the local inference restdfer to different events. The
smallerd, the higher is the likelihood to capture just one event, batdloser we get to the phones
time synchronization error. Because time stamps are agsdovithL| vectors (see Section 3.2.6)
it is possible for the phone to determine if an event is sathatéhe same time.

In order to provide a more robust system against false pesitia windowing approach is
adopted where a speaker is deemed to be speaking only if theyetected for at least one more
time in the past two iterations of Equations 3.2. This pgl&nilar to the windowing policy in-
troduced for the local inference in Section 3.2.6, proviegserimentally the best tradeoff between
classification delay and classification accuracy.

3.3 Discovering the Sensing Context

Efficiently computing the low level context of the phone,ttig the position of the phone carried
by a person (e.g., in the pocket, in the hand, inside a bakkmexcthe hip, arm mounted, etc.) in
relation to the event being sensed - which we call ghene sensing contextis a fundamental
building block for new distributed sensing applicationsitbon mobile phones and for Darwin.
These observations have grown out of our implementationesicEMe discussed in Chapter 2.

While there has been significant research in the area of xtomteare applications and systems,
there has been little work on developing reliable, robust Bbw cost (i.e., in terms of energy
efficient and computational costs) algorithms that autaraty detect the phone sensing context
on mobile phones. We envision a future where there are ngtpmrsonal sensing applications but
we see the mobile phone as enabling global sensing applisatihere the context of the phone in
relation to the sensing event is crucially important.

The different context impacts the fidelity of a sensing aggtlon running on mobile phones.
For example, the camera is of little use in the pocket but thraphone might still be good [40].
Researchers are developing new sensors for the phonesdhatagine will be available over the
next decade, these include gé@nd pollution sensors [35]. If the phone is carried insidepbcket
or a backpack, an application relying on €@ pollutants measurements would perform very poorly

64

given that the phone is not exposed to open air. A betteripodivr such sensing would be out of
the pocket when the phone is exposed to a more suitable ¢doregsensing. Similarly, if the
accelerometer readings of the phone are used to infer tlerperactivity, the accelerometer would
report different data if the phone is mounted on the arm qpeld to the belt. This is because,
given the same activity, such as walking for example, arnrmgsvivould activate the accelerometer
much more strongly for an arm-mounted phone than on the @k#re the phone oscillates more
gently. In both cases a mechanism to infer the context of tbkile phone is needed in order to
make the applications using the €6r pollution sensor and the accelerometer, respectiveagtr
appropriately. We envision a learning framework on the ghitrat is more sophisticated than what
is implemented today. For example, when sensors repoerdiff sensor readings according to the
position on the body, such as the accelerometer, the applialearning engine should switch to
different classification algorithms or sensor data treatnpelicy in order to meet the application
requirements.

Today the application sensing duty-cycle is costly becétisanot driven by the phone sensing
context, therefore, it is costly in terms of energy usagesfmsing, computation and potentially
communications if the inference is done on the backend, teinase with split-level classification
[14]. By offering system developers accurate phone seringext prior to running classification
algorithms, very low duty-cycle continuous sensing atian systems are possible. In this case,
the phone sensing context mechanism would refrain theagtjgh from activating a power hungry
sensor if the context is unsuitable (e.g., don't activatepbllution sensor if the phone is not out of
the pocket) or it may weight real-time sensor readings ararices based on knowledge of where
the phone is on the body (e.g., if the microphone is neededemsare human activity [40] and it
is in the bag). In what follows we discuss Discovery [80], anfiework that addresses the context
problem supporting mobile phone-based sensing with imgat@ccuracy and lower duty-cycle sys-
tems. Discovery is designed to automatically detect thaelsensing context as people move about
in their everyday lives. Automatic context detection is @y issue for smartphone sensing ap-
plications because prompting the user to provide inforamadibout the position of the mobile phone
on the body is not a viable and scalable solution. Phoneragmsintext is an important building
block toward the successful implementation of Darwin and@eal, social, and public sensing ap-
plications on mobile phones. Discovery, while prelimingsyovides important steps towards the
goal of providing reliable phone sensing context.

3.3.1 Phone Sensing Context

Accurate, robust and low duty-cycle detection of phoneisgnsontext is an important enabler of
distributed sensing applications on phones, in particaelamtinuous sensing applications that sam-
ple sensors, make inferences, and communicate with thebddervices in real-time.

Assume mobile phones are equipped with pollution,,C8 more specialized environmental sen-
sors as we imagine [35]. Measurements from any of these engmild most likely be impeded
by the presence of clothing or fabric (e.g., phone insideptieket or backpack) or by a short time

65

interval the sensors are exposed to an ideal sensing cgnéexphone in hand or exposed to open
air). Therefore, phone sensing context detection woulddavgthe sensing system performance.
We could stop the system from activating the sensors whequthlity of the sensor data is likely to
be poor (e.g., phone inside the pocket). This would helpaedhe sensing duty-cycle improving
the battery lifetime of the phone, which continuos sensigiaation significantly limit today (e.qg.,
phones running CenceMe [14] were initially limited to onlyéurs of operation). We could inform
the system when a suitable sensing context is triggeredtecigel (e.g., phone taken out of the
pocket) to maximize the accuracy and robustness of thersggagplication which would then take
advantage of the new context for collecting as many sensalings as possible. It is evident the
importance of the phone sensing context role in driving teghihones sensors duty-cycle lower.
Another reason to provide phone sensing context as a lowdevgice on phones is to improve
the inference fidelity of distributed sensing applicatioAkhough previous work [27] shows that it
is possible to obtain reasonably good activity classificaticcuracy when using training data from
sensors mounted on different parts of the body, it is notrdiesy an activity classifier would per-
form when the device is a phone, not specifically mounted rfimxing as a dynamic system), and
operates in noisy, everyday environments that people fiechselves in, rather, than under labora-
tory test conditions. Many questions remain. Would trajrilata from many activities and different
parts of the body make a single classification model accerawegh? To avoid excessively diluting
the training data set, would it not be preferable buildindeasification model for each single activ-
ity and position of the mobile phone on the body and then $witodels according to the detected
phone sensing context? For example, a system could havelkirigfaactivity classification model
for when the mobile phone is in the pocket, in the person’slhand in the backpack and use one of
the models according to the detected phone sensing coRtesgtilts obtained from experimentation
in [14] show, for example, that activity classification ay varies when the phone is carried in
the pocket or in the hand. A system that used phone sensingxtdn drive the classification model
by switching in the right technique would alleviate this Iplem. We believe this is of importance
now that smart phones are growing in sensing and compughto@pability and new demands are
emerging from different sectors such as healthcare. Itj@itant to note that in the case of health
care sensing applications it is fundamental to limit thesiliication error. Sensing context detection
could drive inference model switching in order to achievidreclassification accuracy.
We argue that phone sensing context detection could alsgfeited by existing phone applica-
tions and services. For example, by inferring that the pl®irethe pocket or bag, a caller might be
informed about the reason the callee is not answering theepball while the callee’s phone ring
tone volume could be increased so the callee might pick uge ¢nld imagine people enabling
this type of additional presence provided to legacy phomgaethrough Discovery. By using the
gyroscope (which measures the angular rate change of tmeptwdetect the user taking the phone
out of the pocket and moving it upwards, the screen saveddmeidisabled and the phone’s key-
pad made automatically available. One could imagine maoly adaptations of the Ul with phone
sensing context enabled. Similarly, the action of movirg phone towards the lower part of the

66

3rd level

of temporal smoothing
inference
2nd level

of sensing modalities merging
inference

MICROPHONE J| CAMERA/LIGHT || ACCELEROMETER GYRO COMPASS

1st level SENSOR to infer infout of

of to infer in/out of to infer infout of pcﬁ(ne;, :i:ag: t: ém tc:g;;:rsm to[;:feer:t:t?::e
inference || Pocketstate pocket'state table, and state

transitions

Figure 3.4: Discovery’s inference steps.

body could trigger power saving mode. The camera applicaiio the phone could be automati-
cally started as the phone is detected in the user’s hand awmddin a vertical position, which is
the condition that normally precedes the action of takingpat@. One could imagine phone sens-
ing context provided by the Discovery framework discussethé next section being applicable to
many emerging applications finding their way on to smartgisofror example, reality mining using
mobile phone sensor data is starting to be explored as amesthdorm of communication and for
social purposes.

3.3.2 Discovery Design

The idea behind Discovery is to use the entire suite of sgnsiadalities available on a mobile
phone to provide enough data and features for context disgaat low cost and for increased
accuracy and robustness. Many research questions arissponse to the challenges discussed
above: how do we combine the input from multiple sensorsh s18; accelerometer, microphone,
gyroscope, camera, compass, etc., to infer the phone gecaintext? What are the best learning
approaches and feature selection policies in order to geavieliable and scalable context inference
system? How do we design low duty-cycling policies with gotable accuracy when employing
phone sensing context? What is the inference accuracy argyeoost tradeoff between using all
the possible sensors and only a subset of them accordingitcathailability on the mobile phone?
Which sensor set is more responsive to the type of noise isytsEm (i.e., classification outside
controlled laboratory environments)? We believe that Biscy in its totality needs to ultimately
address these demanding challenges. However, our praliynimork focuses on a simple phone
sensing context: is the phone in the pocket or out. This solike a trivial context that could be
solved by a number of different sensors. We focus on the iimoe - a powerful and ubiquitous
sensor on every phone on the market - making Discovery saitalpotentially all phones not just
the smart ones. In what follows, we outline out initial framoek design.

Discovery consists of a hierarchical inferences pipelaselustrated in Figure 3.4:
First Level Inference - Uni-sensor inference: In this phase, the sensor data from individual
sensors is used to operate a first level of inference. Fea@xteaction is tailored to each sensor.
This first inference step provides hints about the natureeturrent phone sensing context, which,

67

FFT power
FFT power

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Frequency Frequency

(@) (b)

—— in pocket training
out pocket training

counter above threshold

1000 2000 3000 4000 5000 6000 7000

(©)

Figure 3.5: (a) FFT power of an audio clip when the phone is inside the etalb) FFT power of an
audio clip when the phone is outside the pocket; (c) Counh@fumber of times the FFT power exceeds a
thresholdT for both the in-pocket and out-of-pocket cases.

however, might not be conclusive. For example, the use ofdingera or light sensor to infer if the
phone is in or out the pocket could be misleading because laepbiat of the pocket could be in a
dark environment, the camera could be covered by the parsamd or by the surface where the
phone is positioned. For this reason, a second level ofanter built on top of the first is needed.
Second Level Inference - Multi-sensor inference: In this phase, the inference process is based
on the output of the first phase. Hence, the first level of arfee provides the features to the
second level. At this stage, the combination of the carmighd&ensor and microphone output would
provide better confidence about the actual sensing corfiegtaccelerometer as well could be used
as a hint to determine if the phone is inside or outside thé>agiven the different accelerometer
data signatures when the phone is in a person’s hand versrs itihin the pocket. Similarly, by
measuring the angular rate change, the gyro could proviiedtions that the phone has been taken
out of the pocket considering that the arm rotation wouldibkga up by the gyroscope.

Third Level Inference - Temporal smoothing: In this phase, temporal smoothing and Hidden
Markov Model (HMM) techniques are used on the output of theped level inference. This step
exploits the correlation in time of sensed events when a@lesperiences a certain context.

68

3.3.3 Discovery Implementation

For our initial implementation of Discovery context cldisis are implemented on the Nokia 95 and
Apple iPhone. The preliminary system implements a set ofiistipated inference models that in-
clude Gaussian Mixture Model (GMM) and Support Vector MaehiSVM) on the Nokia N95 and
Apple iPhone with focus on a limited set of sensors and imiegs; that is, we uses the microphone
sensing modality to infer the phone sensing context of irptheket and out of the pocket. We dis-
cuss our initial results in the next section. Further mdigslj such as accelerometer, compass, and
light sensor, are going to be used in combination with theapicone to infer a larger set of sensing
context as part of our future work. The initial idea is to exdé which learning technique (between
GMM and SVM) is better suited to the problem and, at the same,tto investigate the adoption of
more than one learning strategy in concert to perform thé ¢iaasification. More learning strate-
gies will be evaluated in the following phase of this work.eTd¢hallenge with GMM and SVM is
that the phone has not been developed to run these compatitidemanding models. Part of our
efforts is to implement light weight versions of these msded a way forward to do more sophisti-
cated multi-inference classification, as called for by Digry. In particular a 20-component GMM
is adopted, where the number of components is chosen byativejithe model over the test data
set varying the number of components and picking the numbeomponents returning the best
classification accuracy.

Feature Selection.The selection of an appropriate set of features is a key stgpdd classifi-
cation performance. Atthe moment, a supervised learnipgoagh is adopted and Discovery relies
on a 23-dimensional feature vector extracted from an augio A richer selection of features will
be evaluated as part of our future work. The current featares
1st-19th: Mel-Frequency Cepstral Coefficients (MFCC), which haverbgroven to be reliable fea-
tures in audio signal classification problems. For the MF@&gaction we rely on a well-known
Matlab libray [142] which is largely used by the research oamity. We also developed a C ver-
sion of the MFFC extractor library that can run on the phone;
20th: power of the audio signal calculated over the raw audio;data
214, 22nd: mean and standard deviation of the 2048-point FFT powenér0t600 Hz portion of
the spectrum. The reason for focusing on this portion of fleesum can be seen from Figures
3.5(a) and 3.5(b), where the presence of a pattern betwedwthFFT distributions - for in pocket
and out-of-pocket recording - is clear. It can be seen thet awpattern is more evident in the 0-600
Hz portion of the spectrum rather than in the whole 0-1024 atge;
23rd: this feature is the count of the number of times the FFT paweeeds a certain threshold
T. This threshold is determined by measuring the Euclide#ardhce between the count of the
in-pocket and out-of-pocket cases and picking the threktinat maximizes such a distance. An ex-
ample of the count for both the in-pocket and out-of-pockestes is shown in Figure 3.5(c) where it
can be seen how these features can be used to discriminateenethe in pocket and out of pocket
cases. The x-axis of Figure 3.5(c) reports the number ofthimglip has been split in to.

Consequently, for the mixture model, a 20-component, 23dsional GMM is used. The

69

Table 3.1: Sensing context classification results using only the nplcome. Explanation: when a result is
reported in X/Y form, X refers to then pocketcase, and Y refers to theut of pocketase. If the column
reports only one value, it refers to the average result foh boandout of pocket. LegendA = GMM; B

= SVM; C = GMM training indoor and evaluating indoor onlp, = GMM training outdoor and evaluating
outdoor only;E = SVM training indoor and evaluating indoor only;= SVM training outdoor and evaluating
indoor only;G = GMM training using only MFCCH = SVM training using only MFCC.

Classification results A B [} D E F G H
Accuracy 84% /78% | 80% | 75%/84% | 84%/83% | 68% | 81% | 77%/79% | 71%
Error 16%/22% | 20% | 25%/16% | 16%/17% | 32% | 19% | 23%/21% | 29%

SVM classifiers adopts the 23 dimensional feature vector.

Training. The training phase is performed using audio data collect#d avNokia N95 and
Apple iPhone in different settings and conditions from aspargoing through different environ-
ments for several hours. Namely, the audio is recorded inet mdoor office environment and an
outdoor noisy setting (along a road with cars passing byboth scenarios the phone is carried both
in the pants pocket and outside the pocket in the hand. Theeldthese scenarios, i.e., indoor
and along a road, is motivated by the fact that they are reptative of classes of locations where
most likely people spend a lot of their time while carryingithphone both inside and outside the
pocket. For each configuration 14 minutes of audio are rexbad different times. Half of each clip
(i.e., about 7 minutes of audio) is used to train the clasgsifid@he training data is finally labeled
accordingly.

Prediction. For prediction, the remaining half of each audio clip nottgdirthe training set
(i.e., duration of about 7 minutes) is used. Each sampleistsnsf a 96 msec chunk from which
the 23 features are extracted. For each configuration thierakeut 58000 samples available for
training and 58000 for evaluation.

3.3.4 Preliminary Discovery Evaluation

In what follows, preliminary results from using both the GMivid SVM classification techniques
are reported. The results highlight that the audio modaditgffective in detecting the infout of

pocket context with reasonable accuracy. Higher accuranybe achieved by combining further
modalities such as accelerometer and light sensor. Colénans! B in Table 3.1 show, respectively,
the classification results for GMM and SVM when the trainirgtadcombines both indoor and
outdoor audio and the phone is carried in and out the pockiet ré&sults are quite encouraging,
since we obtain about 80% accuracy (see the accuracy valueslimns A and B) adopting a
non sophisticated feature set and using only one sensinglitypd.e., the microphone. We are
confident that by involving more sensing modalities into thessification process, for example
the accelerometer and light sensor, a more accurate salaiuftithe feature vector, and temporal
smoothing, it might be possible to achieve a much highesiflaation accuracy. We then train and
evaluate the models for only one scenario, i.e., eitherdndo outdoor. The results using GMM
are in Table 3.1 column C and column D. The results for SVM areolumn E and column F. In

70

the case of SVM trained and evaluated for the indoor scemaulyp (see column E) the accuracy is
lower than the other cases because Libsvm (the well known SivEry implementation we adopt)
is running with the default settings with the kernel optiatian being disabled. From these results
it is interesting to see that training the models with botfoior and outdoor data does not dilute the
training data and the final classification accuracy does oy dignificantly compared to the case
when the models are trained for a single scenario only andaeal for the same scenario. In fact,
the accuracy in columns C, D, and F is on average close to 80&4dlas case of indoor and outdoor
training data set (see columns A and B). Columns G and H ineTad show, respectively, the
classification results for GMM and SVM when the model is teginising only MFCCs (hence a 19-
dimensional feature vector). It is evident that the additidthe 4 extra features (i.e., signal power,
FFT mean, FFT stddev, and number of times a threshold is dgddgy the FFT power) boosts the
classification accuracy. The improvement can be seen by adngpthe results in columns G and
H with the ones in columns A and B.

3.3.5 Discovery Future Work

After the initial promising results, the goal is to implemenworking prototype for the Android
platform as well. More sensing modalities are going to bedugecombination with the audio
modality. In particular, the accelerometer, magnetomaetaa light sensors. Research is going to be
needed in order to identify the most suitable feature vesltments that combine the characteristics
of all the sensing modalities. Temporal correlation betweeents is also going to be taken into
consideration to improve the overall accuracy. Techniqueh as HMM or voting strategies will
be taken into account. We will also pursue the idea of letpegple customize the Discovery
classifiers to accommodate their habits and needs.

3.4 Privacy and Trust

Security, privacy, and trust raise considerable challerige¢he area of smartphone sensing. While
we do not present solutions to these challenges, thosdmswuwre critical to the success of the
research discussed in this Chapter. Darwin incorporatesrdoar of design decisions that are steps
towards considering these challenges. First, the raw selasa never leaves the mobile phone nor
is it stored on the phone — we only store models and featuneputed from the raw sensor data.
However, features and models themselves are sensitivalddataeeds to be considered appropri-
ately and therefore protected. In the case of the speakegmiémn application, the content of a
conversation is never disclosed, nor is any raw audio daammmmunicated between phones. The
data exchanged between phones consists of classificatifidence values and event models. Next,
mobile phone users always have the ability to opt in or outafiin, hence, no model pooling and
collaborative inference would take place unless the uselerauch a determination.

To meet privacy, security, and trust requirements Darwiongls should: i) run on trusted de-
vices; ii) subscribe to a trusted system; and iii) run a gdstpplication that is either pre-installed

71

0.7
0.65
0.6
0.55 |
05 |,

Accuracy

0.45 | ¥ x~

04 Speaker1 + |
Speaker2 X |
0.85 Speaker3 X

0.3

0 50 100 150 200 250 300 350
Time (seconds)

Figure 3.6: Accuracy, without evolution, for three speakers when wajkdlong a busy road without classifier
evolution and having trained the classification modelsridoirs only.

on the phone or downloaded from a trusted third party (e.gplé& App Store, Nokia Ovi Store,
or Android Market). Any phone-to-phone interaction (ejgooling and collaborative inference)
should be regulated by off-the-shelf authentication anti@aization mechanisms that prevent the
injection of malicious code or intentionally distortedenénce results from adversaries.

3.5 System Performance

In what follows, we first discuss the implementation of Darwn the Nokia N97 and Apple iPhone
and then present the detailed evaluation results of the iDaystem supporting the speaker recog-
nition application.

3.5.1 Phone Implementation

Darwin is implemented on the Nokia N97 using C++, Kiss FFT4[lfor fast fourier transform
(FFT) calculations, and QT [143], which is a wrapper arourd-@r the graphical user interface.
On the Apple iPhone we use C++ and the FFTW fast fourier taansfibrary [144]. The necessary
algorithms, i.e., GMM training, the probability densitynittion, and MFCC extraction are ported
to the N97 and iPhone from existing Matlab code that we verif@work correctly. We plan to
make this toolkit available in the future as an open sourcogept. The availability of this toolkit
on a phone is a considerable resource for building more galveassifiers. The backend server
responsible to run the model training and re-training fasletion is implemented on a Unix ma-
chine using C and standard socket programming for commiimisa A UDP multicast client is
implemented to allow local inference results propagatidrengas an ad-hoc lightweight reliable
transport protocol has been built to send feature vectotisetdackend for model training, to send
trained models to the phones, and to exchange models dléngpbling phase. Because we target
heterogeneous scenarios, an audio sampling rate of 8KH&dsin order to run Darwin at the same
time on the iPhone 3G, which can drive the microphone up toHB&ling, the iPhone 2G and
the Nokia N97, which only support 8KHz audio sampling rate.

72

Number of Recruits
O P N W b U1 O N ©

|

50 100 150 200 250 300 350
Time (seconds)

o

Figure 3.7: Evolution sessions count over time in the indoor scenarigpeaker 8.

3.5.2 Experimental Results

We evaluate the Darwin system using a mixture of five N97 ahdriles used by eight people over a
period of two weeks generating several hours of recordetbaathtaining speech portions. In order
to evaluate the system against ground truth data, the aadioisl manually labeled by extracting

the voicing chunks of each of the eight speakers. The auder@ded in different locations under

differing conditions such as a quiet indoor environmentlkimg on a sidewalk along a busy and

noisy street, and in a noisy restaurant. This provides a ¢pasis to validate Darwin under very

different operating conditions. We only present a subs¢h@fesults from our experiment due to
space limitations.

The Need for Classifier Evolution

We conduct a simple experiment to show the need for classii@ution on mobile phones. Three
people walk along a sidewalk of a busy road and engage in ceati@n. The speaker recognition
application without the Darwin components runs on each efotones carried by the people; that
is, no classifier evolution, model pooling, and collabaetinference algorithms are enabled for
the experiment. The voice classifier for each person isddhin a quiet indoor environment. We
guantify the performance of a classification model traimatbors when operating in a noisy out-
door setting. Figure 3.6 shows the classification accurad$][for mobile phones 1, 2, and 3 for
speaker 1, 2, and 3, respectively. It is evident from the fblat the accuracy is quite low because
the maximum speaker classification accuracy for speaked 2 #163% and 61%, respectively, and
only 52% for speaker 3. The poor performance is because #issifitation model trained indoor
performs poorly outdoors. This highlights the challengespnted when sensing in different envi-
ronments. Building audio filters capable of separatingevdiom other types of noise is challenging
and would not likely scale given the large pool of possiblergts that may be encountered by a mo-
bile phone on the street or in any other environments. Tliglrenotivates the need for designing
efficient classifier evolution technigues that operatesparently to the person carrying the phone
in order to evolve classification models according to theares where people find themselves.
Let us take a look now at the evolution algorithm performarieigure 3.7 shows the distribu-

73

120

100 | e T
80 |

60 r

Size (KB)

Speaker 1
| ; Speaker 2
20 f o« Speaker 4

40

* X +

0 50 100 150 200 250 300 350 400
Time (seconds)

Figure 3.8: Size of the data set recruited during the evolution phadedmestaurant scenario.

[
o

Time (sec)

O P N W H OO N © ©
T T

0 200 400 600 800 1000 1200 1400
Training data size (KB)

Figure 3.9: Server training computation time as a function of the tragrdata size. The server has a 2.4GHz
cpu and 4GB of RAM.

tion, for the duration of the experiment, of the number ofiawshunks recruited by the classifier
evolution algorithm for speaker 8 in the indoor case. Simisults are observed for other speak-
ers not shown in the results. As expected, a larger numbenwfks are recruited during the first
phase, when the application is run after the initial trajnithan towards the end, when the model
has already been refined and little or no model evolutiongsired.

Figure 3.10 shows the accuracy improvement as the amourdtafstnt from the phone to
the backend for re-training grows. This result refers toffedint outdoor environment than the
one in Figure 3.6. This second outdoor scenario is noisi@n the first one, causing the initial
accuracy before evolution to be lower than the one repondeigure 3.6. Clearly, the larger the
training set capturing the characteristics of the new emwirent the better the performance. Figure
3.8 shows the amount of audio data recruited by the evolwlgarithm for the duration of the
restaurant experiment. It is interesting to see that affewaminutes of conversations the models
of the three speakers diminish their training data recreiitrand model evolution eventually stops
(as happening for speaker 1 model). This confirms the behabigerved for Darwin in the quiet
indoor environment. The only difference is in the amounteafruited data between the restaurant
and quiet scenario. In fact, in the former case the amounat cecruited ranges between 78KB
and 100KB, whereas in the indoor case it is between 16KB aKd7This is in line with the fact
that less data is needed to evolve an indoor model than alnestt” model (i.e., a very different

74

0.6

48944

Accuracy

0.5 | Bytessenttoserver -~ - e 41952

1 34960
0.4
1 27968
0.3
1 20976

Accuracy

0.2
1 13984

Bytes sent to server

0.1 1 6992

0 0
0 100 200 300 400 500 600 700 800
Time (sec)

Figure 3.10: Classifier accuracy and the amount of needed training data gutdoor scenario.

Speaker 1
Speaker 2
08 Speaker 3
: Speaker 4
Speaker 5
Speaker 6
Speaker 7
Speaker 8

0.6

> e o MO X X +|

Precision

e N K el g . e

100 150 200 250 300 350
Time (seconds)

Figure 3.11: Precision for speaker 8 basic inference when speaker 8 éksyein an indoor quiet setting.

environment from a quiet place) since initial training isfpemed in a quiet place. Figure 3.9 reports
the server training algorithm running time as the trainiagadset grows. The measurement refers
to the outdoor case and levels off when the accuracy (showigimre 3.10) reaches the maximum.
Right before the end of evolution the server takes about ¢6reks to train the GMM model using
a 1.3MB data set.

Experimental Scenario One: Quiet Indoor Environment

We first show the performance of the speaker recognitioniGaifuin analyzing data collected from
5 different phones concurrently running the Darwin systemineeting setting in an office environ-
ment where 8 people are involved in a conversation. The pharelocated at different distances
from people in the meeting, some on the table and some in @sgmbckets. The aim of the ex-
periment is to study the impact of different phone sensingexd showing that a low classification
accuracy due to adverse context can be compensated by Darwin

In Figure 3.11 we show the classification precision [145Kjmeaker 8 calculated by speaker 8's
phone using the basic speaker recognition application wheaker 8 is talking. Figure 3.11 shows
that the precision of the basic speaker recognition apjmicas below 50%. This result indicates
that speaker recognition using an individual mobile phanehallenging. The reason is that the
phone could have poor sensing context for example in thegideak for part of the conversation of

75

1
095 |
09 |
085 |
08 |
075 |/
07%
065 /
06/
0.55 |
05

Normalized difference

basic —— 1\ /
threshold >\ J
windowing -

1 2 3 4 5 6 7

Pair of mobile phones
Figure 3.12: Normalized true positive-false positive difference betwepeaker 8 and all the other speak-
ers when speaker 8 is speaking. The closer the normalizétatite to 1, the larger is the true positives
compared to false positives.

04 7F
03 4 precision -

accuracy —+—

Accuracy/Precision/Recall

recall -

02}
01t
0

50 100 150 200 250 300 350
Time (sec)

Figure 3.13: Mean recall, precision, and accuracy in an indoor quietrenvment with collaborative inference
for the eight speakers.

speaker 8) or affected by other factors such as noise mixgdvaice.

Figure 3.12 shows the benefit of applying the 50% threshglginhnique and windowing policy
(described in Section 3.2.6) to the basic speaker recogniiassification algorithm. The 50%
thresholding technique makes sure that there is a 50% eliffer between the confidence of the
inferred speaker and every other speaker, whereas the wiimglpolicy reduces the effect of false
positives. Figure 3.12 shows the difference between the psitive and false positives counts
normalized by the true positive count for speaker 8 speakiing closer the normalized difference
to 1, the larger is the number of true positives versus thebauof false positives. Figure 3.12 shows
the combined positive effect of the 50% thresholding anddaiving techniques, which makes the
normalized difference larger compared to the basic tectmid his is a first step toward the final
inference, which is part of the collaborative inferencegghaf Darwin; however, it is not enough
to achieve higher classification accuracy. In fact, whenDhewin system is activated a further
performance boost is registered.

Figure 3.13 shows results for the mean recall [145], pregijsand accuracy results for the eight
speakers classification when Darwin is running. It is evidesm the plot that Darwin boosts the
classification performance of the speakers identificatibhe boost is due to collaborative infer-
ence, which leverages the other co-located mobile phonesdier to achieve better classification

76

Diff 1
Diff 2
Diff 3

: Diff 4
04 1 Diff 5
: Diff 6
02k Diff 7

e O m O ¥ X +

Classification Difference
Classification Difference

R 0o———
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time (seconds) Time (seconds)

Figure 3.14: Classification difference between Figure 3.15: Classification difference between
speaker 8 and the other speakers without Darwinspeaker 8 and the other speakers with Darwin.

accuracy.

The other interesting result from Figure 3.13 is the positmpact of Darwin’s classifier evo-
lution. The accuracy, precision, and recall increase awee &t the beginning of the experiment
as new audio is recruited and the classification modelsareed taking into account the new au-
dio. The performance for accuracy, precision, and recadli$eoff at the point where the classifier
evolution algorithms does not benefit from more data, asudised in Section 3.2.4.

The benefit of model evolution, model pooling, and collakieeainference can be also seen in
the results shown in Figures 3.14 and 3.15. If we indicatd WR and FP, respectively, the true and
false positives when speaker 8 is speaking, the y-axis oplibts reports the quantity (TP-FP)/TP
over time. A FP count is maintained for each speaker, thuggurés 3.14 and 3.15 eight curves are
shown.

In one case Darwin is disabled (Figure 3.14), in the othee Egwin is enabled (Figure 3.15).
When (TP-FP)/TP is close to 1 it means that the number of toséipes dominates the number of
false positives. In contrast, if (TP-FP)/TP is close to 0 waeehthat the number of false positives
approximates the number of true positives. We can see thatlifference between speaker 8's
true positives and any other speakers’ false positivesgetavhen Darwin in running (as shown
in Figure 3.15) than when it is not (see Figure 3.14). Thisnistlaer indication of how Darwin
improves the classification result for a given speaker.

Experimental Scenario Two: Noisy Indoor
Restaurant

In the next experimental scenario, we evaluate Darwin wherspeaker recognition application is
running on five phones while five people are having a meal insyrrestaurant. This contrasts the
first scenario of a quiet indoor setting. Three out of five pe@we engaged in conversation. Two
of the five phones are placed on the table, the other phones #re pants pockets for the entire
duration of the experiment. In Figure 3.16, we show the diaation precision of speaker 4 from

three of the mobile phones located around the table peoelsiting at; note, we observe similar
trends for the other phones. Figure 3.16(a) is the preciomputed by speaker 4's phone, which is

a4

" Speakerl '+ " Speakerl '+
Speaker2 x Speaker2 x
08 + Speaker 3 * 08 | Speaker 3 x
' Speaker4 © ' Speaker4 ©
Speaker5 = Speaker5 =
§ 06} Speaker6 o S 06} Speaker6 o
‘@ Speaker7 e ‘@ Speaker7 e
] Speaker 8 2 9 Speaker8 2
g 04 M a 0.4 F P =
o T b -

0.2 I 02 I oty

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

(@) Precision for speaker 4 calculated by the
speaker’s mobile phone without collaborative infer-

Time (seconds)

Time (seconds)

(b) Precision for speaker 4 calculated by mobile
phone 1 without collaborative inference.

ence.
1 " Speakerl T+
Speaker2 x
0.8 Speaker 3 x
' Speaker4 ©
Speaker5 =
S 06 Speaker6 ©
(2] Speaker 7 e
9 Speaker8 2
a 04
0.2
lé,m&ﬂj{""ag\f; ————— S o e
0 wlzerd Lty DT S e S e |
0 50 100 150 200 250 300 350 400

Time (seconds)

(c) Precision for speaker 4 calculated by mobile
phone 2 without collaborative inference.

Figure 3.16: Precision for speaker 4 on different phones in a noisy reatda@nvironment without collabo-
rative inference.

the closest phone to speaker 4 (it is carried by speaker 4Jtien speaker 4 is talking. The reason
we select speaker 4 for the evaluation is that speaker 4 ddkest person to a nearby table where
another group of people is having a loud conversation. Hereslow the benefit of the Darwin
system for the phone of a speaker who is positioned in a namaptontext, i.e., close to a noise
source.

Figures 3.16(b) and 3.16(c) refer to the precision caledldty two other phones, which we call
phone 1 and 2, located at the opposite side of the table wpesksr 4 is sitting. Figures 3.16(b)
and 3.16(c) show on average higher classification precisiophones 1 and 2 when speaker 4 is
talking than when the classification is performed by spedisphone reported in Figure 3.16(a).
This is because phones 1 and 2 are more distant from the sofunogse and consequently they are
able to capture higher quality speaker 4’s voice audio tipgalser 4's phone itself.

The important point is that Darwin boosts the classificagierformance of speaker 4 by leverag-
ing other surrounding phones experiencing better sensintekts; this is shown in Figures 3.17(a),
3.17(b), and 3.17(c) which report, respectively, the lepatcision, and accuracy of the three speak-
ers in the restaurant experiment, including speaker 4, tower From Figure 3.17(c) it can be seen
that speaker 4's accuracy is low§5 %) at the beginning of the experiment but starts incrgasin

78

0.8

% ’’’’’ [P
07 oo Speaker1 +
0.6 | X/ Speaker2 X
) Wﬂ/ Speaker4 %
05§ c
3 2
(] B4
& 0.4 e §
0.3 X 1 o .
02t T] 03 ' Speaker1 +
¥ 0.2 Speaker 2 x
0.1 v] 0.1 o Speaker4 %
0 sk 0 sk
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (seconds) Time (seconds)
(a) Recall. (b) Precision.

1

0.8

06 fi /

| Speaker 1
0.4 Speaker 2
Speaker 4

Accuracy

* X +

0.2

0

0 50 100 150 200 250 300 350 400
Time (seconds)

(c) Accuracy.

Figure 3.17: Recall, precision, and accuracy in a noisy restaurant wahwin for three speakers.

as the experiment proceeds. The classifier evolves and theuading mobile phones patrticipate
in collaborative inference. At the end of the experimengadqer 4's classification accuracy reaches
~80%. The fact that speaker 4's recall and precision presentvhlues for the duration of the
experiment (as shown in Figures 3.17(a), 3.17(b), resmdyji confirms that speaker 4 voice is
impacted most of the time by loud conversation from the nakte.

Experimental Scenario Three: Walking Outdoors Along a Sidevalk in a Town

The final scenario we study is an outdoor environment wheegoople walk along a sidewalk and
three of them are talking. This contrasts the first two sdesain this experiment, five people carry
phones either clipped to their belt or inside their pockéisin the restaurant scenario, the amount
of audio data recruited by Darwin to evolve the classifieargér than the indoor evolution case and
ranges between 90KB and 110KB of data. The performance bsogl the Darwin system can be
observed in Figure 3.18 where the speaker recognitionifitzggn accuracy increases to 80-90%.
The greatest improvement is observed by speaker 1 whose ghoiipped to their belt. This mobile
phone is exposed to environmental conditions such as widghassing cars making the audio data
noisy and voice hard to pick up. However, we note that sombebther phones experience better
sensing context and by relying on these phones Darwin btlesténal classification accuracy for
speaker 1.

79

Speaker1 +
0.8 Speaker 2
Speaker 3

| Speakerl +
0.6 Speaker2 X
Speaker 3

0.6

c
K] o S
g 04 ’ 2
o < i
a 0.4 i N
0.3 | ’ Horr %
0.2 VA 1
P s 0.2 f
0.1 i
0% : : : : 0 % : : : :
0 50 100 150 200 250 0 50 100 150 200 250
Time (seconds) Time (seconds)

(a) Recall. (b) Precision.

0.95
0.9
0.85
08
0.75
07
0.65
06 |
0.55

Accuracy

Speaker 1
Speaker2 X
Speaker3 %

0 50 100 150 200 250
Time (seconds)

(c) Accuracy.

Figure 3.18: Recall, precision, and accuracy for three speakers walking sidewalk along a busy road.

3.5.3 Impact of the Number of Mobile Phones

In this experiment, we study how the Darwin system'’s pereomoe changes as the number of mobile
phone patrticipating in model pooling and collaborativeenehce varies. This experiment is also
conducted in the same noisy restaurant discussed in soewnarj which represents a challenging
sensing environment. The experiment consists of threelpespeaking and five phones carried by
five people positioned around the table. Some phones aredbtatthe table and others remain in
speaker’s pockets. The experimental scenario starts withtevo of the five phones running the
Darwin system. More nodes are subsequently added up to amaaxof five — all phones run the
Darwin system and are randomly positioned around the talfle.classification accuracy for each
of the three speakers as a function of the number of phonesngifarwin is shown in Figure
3.19. As expected, the larger the number of co-located mghibnes running Darwin, the better
the inference accuracy. The performance gain using calgilve inference grows with the number
of phones according to the algorithm discussed in Sectia &nd in particular to Equation 3.2.
While two phones do not have sufficient “spatial” diversityexperience gain from the Darwin
system, the classification accuracy is boosted when the threaining phones are added.
Speaker 3 experiences low accuracy due to the proximityedf ffhone to another group of peo-
ple involved in a loud conversation. This is perceived as@bly the speaker identification classifier
and negatively impacts speaker 3's voice classificationentioan speaker 1 and 2. Speaker 2 ex-

80

0.6 T

0.5

Accuracy
Accuracy

0.4

03} 04}

L Speaker1 + Speaker 1 +
0.2 4 o Speaker2 X 0.3 L Speaker 2 X
: e Speaker3 x ¥ Speaker3 *
0.1% . . 0.2 . .
2 3 4 5 2 3 4 5
Number of mobile phones Number of mobile phones

Figure 3.19: Accuracy in a noisy restaurant Figure 3.20: Accuracy in a quiet indoor setting
when an increasing number of phones participate when an increasing number of phones participate
to Darwin. to Darwin.

periences low accuracy with three phones running Darwintdwpeaker 2’s voice characteristics.
Speaker 2's classification model poorly classifies spealevdce when operating individually.
This could be due to the fact that the initial training audianot recorded correctly or that the 20-
component 19-dimensional GMM for speaker 2 does not prppaddel speaker 2’s voice. In this
case, a larger number of nodes is needed to perform accped&es 2 classification. The Darwin
system compensates not only errors due to different sewsingxt but also for poor event classi-
fication modeling. This is possible because multiple phamesperate to generate more accurate
inference results. The confirmation that speaker 2's madebi accurate comes from the fact that
speaker 2's recognition with 3 phones performs poorly in garison with speaker 1 and 3 in a
quiet setting (see Figure 3.20), which is where the classifieuld perform the best given the initial
indoor training stage.

We also determine that the reason for better inference acgwvith 3 phones in the restaurant
experiment for speaker 3 is that the other two phones arerctosspeaker 3 than they are in the
quiet indoor case. This offers better audio signal quatitytfie collaborative inference step.

In summary, the Darwin system boosts the classificationracgwhen the sensing environment
or context adversely impacts quality of inference, whenitigdévidual classification model yields
poor accuracy given a person’s voice characteristics (deinase of speaker 2 for our experiments),
and when sensors or microphones have different hardwaraatkéstics [138].

3.5.4 Time and Energy Measurements

When proposing a complex but powerful classification aectitre such as Darwin the natural ques-
tion is: how does this system impact the performance of eagrynobile phones? While we have
completed a first implementation of Darwin on the Nokia N9@ Apple iPhone we recognize that
there are challenges and future work to be done. In what¥sllave present some time and energy
measurements for Darwin running on the N97 (similar peroroe is observed for the iPhone). We
believe that smart duty-cycling is also a future part of oorkwvhich would improve the energy re-
sults presented in this section. Averaged baseline measumteare taken before each measurement

81

Table 3.2: Average running time for processing 1 sec audio clip, semdind transmitting the data.

Routine Running Time (s)
Silence suppression 0.003
Voicing 0.565
MFCC extraction 1.4
Local inference 3.67
TX MFCC to server 0.862
RX model from server 4.7
TX model to neighborg 1.91
TX local inference 0.127
RX local inference 0.09

in order to have a baseline reading, which we subtract frach eseasurement. The measurements
are performed using the Nokia Energy Profiler tool and requefive times. The mean values are
reported. The running time of each Darwin component for bséof audio sampling is reported in
Table 3.2. The most computationally intensive routinestlaedocal inference (which involves the
probability density function calculation for eight speeeand receiving the model from the server.
Figure 3.21 shows the power, CPU load, and memory measutemerthe N97 when running the
Darwin components. It can be seen that the local infereragetakes the largest amount of power
(see Figure 3.21(a)) and CPU load (see Figure 3.21(b)).t&uiied memory usage is measured for
MFCC extraction compared to the other components (see sgd@eof Figure 3.21(c)). This sug-
gests that the MFCC extractor implementation requiresyapétion. Receiving a new model from
the server and broadcasting it to neighbors during poolisg eéauses more power drain than the
other routines. However, evolution and pooling are openatihat occur rarely (i.e., evolution only
once for a certain environment and pooling only once to semdb@el to neighbors), consequently,
pooling and evolution do not heavily account for resourcagaesand power consumption. Routines
that instead occur periodically, such as audio samplinging, MFCC extraction, etc., require less
power each time they are active.

Finally, Figure 3.22 shows the measured battery lifeting the inference responsiveness (de-
fined as the inverse of inference delay) as a function of tliloasampling interval and collecting
1 second of audio each time the microphone is polled. We olit&i shortest battery lifetime-Q7
hours) for a periodic sampling interval of 10 seconds (thimgling interval guarantees the highest
inference responsiveness). However, if smart duty-cgdiachniques are adopted [55], the phone
could operate in a low sensing duty-cycle mode, e.g., witAraging rate of 60 seconds, when
Darwin is not running. As an event is detected, such as vaicase of speaker recognition, Darwin
could become active in a high duty-cycle mode, e.g., using setond sensor polling rate, for the
duration of the event. As the event disappears the phond gauback to low duty-cycle mode and
Darwin would stop working. This would guarantee high apiien responsiveness while main-
taining several hours of battery duration. More detailedlysis of resource consumption and the
development of low-energy duty-cycling for Darwin are imamt future work. We believe however
that new duty-cycling techniques discussed in the liteeafar mobile phones [55, 83] could boost

82

the phone’s battery lifetime of Darwin phones.

3.6 Demo Applications

Darwin can be used by other emerging smartphone sensingaumhs in addition to the speaker
recognition application discussed in this Chapter. In wblbws, we discuss how a number of
demo applications that use different sensing modalitiesbsasupported by Darwin. We discuss
three different demo applications.

3.6.1 Virtual Square Application

Darwin could support applications in the social sphererggtiwhere speaker identification, for
example, could be used to augment the context of a persorhamdtiddies and make the buddy
proximity detection more accurate. Similarly, it could tsed for reliable detection of meetings. A
pure Bluetooth or WiFi based proximity detection systemhigpt work accurately considering the
large amount of devices a Bluetooth or WiFi scan could pa@#yteturn in the area where the per-
son is. We have developed Virtual Square, an applicationetiialoits augmented reality to present
a person’s sensing status information [14] including whbmgerson is in proximity/chatting with
at a certain moment and location. Our Virtual Square protis built for the Nokia N97 writ-
ing a combination of QT code, for the body of the program, apdhl8an routines to access low
level functionalities for the collection of magnetometeadings from the onboard magnetometer.
GPS and magnetometer sensors are used to geo-tag the peasosdr context which is stored on
a server and is retrievable by the buddies who subscribeetsedtvice. Users have full control of
the application privacy settings and can opt-out from disiclg who they are chatting with at any
time. A screenshot of the application is reported in Figug831t is clear how Virtual Square, by
simply pointing the phone as when taking a picture and moitiagound, is a powerful means to
see “through walls” and gather information about people @ades in the very intuitive way of an
augmented reality interface. The old concept of square d&ca pvhere people gather to chat and
meet now becomes virtual, being enabled by the smartph@ms®is which allow to characterize
people’s microcosmaos.

3.6.2 Place Discovery Application

Darwin could support applications using different sensimagalities; for example, place discovery
applications based on radio frequency (RF) activity fronfF\Vdiccess points [141]. Darwin can be
integrated with such an application in the following way:

- Initial training and evolution: the classification model in this case is the RF signaturelprofi
that characterizes a certain place. The dynamics of the diracteristics and the fact that access
points are being added or removed in certain areas make tipedRe time varying. A RF profile
could be initially built by a mobile phone and then evolvedtlas mobile phone visits the same

83

(ehs Power
0.4 ’<A> g <9> <P> (@s=sesss E ------ > < > (@=reereererePrereeencences <> <>
= os|
S
S
2 o.2 |
o H
o o L
O 40
Tlme (sec)
(a) Power.
140 | CPU load 1
120 »<A>g <E><D> QemeemTeneeen > <- >< rrrrrrrrrrrrrrrrrrrrrrrrrrr I L—
& 100 | 1
= 80 | =
K=
2 60 | 1
S
40 |]
20 b
o
o 5 10 40
Tume (sec)
(b) CPU load.
7000
c Memory
<>
6000 | A B D E F G H 1L
P <> <> <> > <>
= 5000 [E
D
£ 4000 | E
w
3
= 3000 3
=
§ 2000 E
il AL ’
o . —n_ - L
o S 10 15 20 25 30 35 40

Time (sec)
(c) Memory.

Figure 3.21: Power, CPU load, and memory usage of the N97 when running iDaivthie Darwin routines
have been made run sequentially and the operations havesbgerented as reported in the following labels:
(A) One sec audio sampling; (B) Silence suppression; (C) MERtraction; (D) Voicing; (E) Local infer-
ence; (F) MFCC transmission to the server; (G) Model recegtiom the server; (H) Model transmission to
neighbors; () Local inference broadcast; (L) Local infeze reception.

0.2

325 E T T T T T

300 [Battery lifetime 1 0.18
& 275 + Responsweness """""" 1 016 »g
5 250t u 2
2 225 1014 g
@ 200 f 1012 &
% 175 | 101§
— L >
= 150 1008 @
> 125 ¢ 0.06 5
= 1 . o
E 100 2
o 75 | 1 004 g

50 - 1 0.02

25 . . P

0 20 40 60 80 100 120
Sampling time (sec)

Figure 3.22: Battery lifetime Vs inference responsiveness.

84

Bill and Lindsay are in a
conversation in the g
kitchen |

Figure 3.23: Virtual Square, an augmented reality application on the WRi the support of Darwin.

place multiple times in the future.

- Pooling: when a mobile phone visits an area for which it does not havemaprofile it has
two options: either build a profile, which requires time anttaduces delay in inference, or, pool
a profile for the area from a nearby mobile phone or backengeseBuilding an RF profile could
take more time than the duration of the visit in the area, tvinieans that the place might not be
discovered. By pooling, the profile is immediately ready ¢aused in the inference phase.

- Collaborative inference: if multiple mobile phones are co-located in the area theyaan
operate to perform a more accurate place inference. Giarsémsed RF activity could be slightly
different from phone to phone, collaborative inferencelddne used to determine what is the most
likely discovered place by, for example, selecting the @ldnat is reported with highest probability
by each of the maobile phones.

3.6.3 Friend Tagging Application

The idea of this application is to exploit face recognitiontag friends on pictures. Namely, the
application automatically associates a name to a persdmeipitture if the person is recognized.
Darwin could improve the application in the following manne

- Initial training and evolution: the initial training starts on each user’s mobile phone. The
mobile phone derives a model for the person’s face throughirging picture. Following this initial
training seed, the face model for a person can evolve ovaex. tifor example, a person’s face is
often captured by the phone’s camera (e.g., when using ddeferencing) allowing the model to
be refined under different conditions (varying light coiudis, on the move, etc).

- Pooling: when friends get together their phones pool each otherts fagdels. PersoA’s
phone does not have to derive a face model for peBsdhpools it directly from persol’s phone.

- Collaborative inference: face detection can now be run in parallel to tag friends whkimg
group pictures. Imagine a group of co-located friends kiictures of each other. Each picture
could have different people and the lighting and angle ohedwt could vary considerably. Co-
located phones individually run their face classificatitgoathm and then exchange information
to refine the final inference; for example, tagging the petm¢ the local inferences returned with
highest confidence.

85

3.7 Related Work

Work on applications and systems for sensing enabled mgbibmes is growing in importance
[42, 9, 146, 73, 124, 111, 5, 40, 41, 48, 14]. Most of the workhm literature, however, propose
local sensing operations running on individual devices dmahot exploit in-field mobile phones
interactions. An exception to this is the work in [124], winiconsiders context driven sampling,
and calibration techniques for mobile sensor networks]147

Sensor node co-operation is studied mainly in the contestiadic sensor networks where fusion
[148, 149, 150] and aggregation [151, 152, 153] techniquesplied. The benefit of sensor nodes
cooperation in the context of object tracking using disiréldl Kalman Filters is discussed in [154,
155]. In [148] the authors propose distributed energy efficrole assignment and [149] discusses
signal processing techniques to reduce the amount of sdatmmneeded to detect an event, while
[150] proposes the adoption of distributed average comsensorder to compensate sensing errors.
In the CASA project [156] researchers adopt techniques ddaloorative and adaptive sensing of
the atmosphere using radar technologies. All these psojaetsent techniques for static and not
mobile sensor networks. To the best of our knowledge, tisdittlé or no work addressing the issue
of how to leverage context-sensitive mobile sensing devéteeh as mobile phones as proposed by
Darwin. There is work on the context of using embedded seraamh as the Intel MSP [11] to infer
people’s activity. However, no interactions between trsgces are taken into account in order to
realize co-operative strategies such as those discussieid @hapter.

Recently, techniques that leverage heterogeneous setsiges in order to exploit external
sensing modalities as a further input for classificatioroadgms or boosting application fidelity
in mobile sensing scenarios are proposed in [79, 157]. Ouk goes beyond the idea of borrow-
ing sensor readings from other sensors since we proposabodditive inference techniques that
combine with classifier evolution and model pooling.

Semi-supervised machine learning techniques are inatstgfor word sense disambiguation
[158], to identify subjective nouns [159], or to classify etional and non emotional dialogues
[160]. However, no work studies semi-supervised learnahmiques in the context of mobile
sensing applications or frameworks.

Audio analysis for speaker identification is a well exploagda in the literature [134, 136, 135,
127, 128, 129, 130, 137, 140]. Although we do not propose mmmler recognition techniques,
we show how to build a lightweight speaker identificationlaggtion capable of running on mobile
phones.

In the literature, context awareness follows the definitibat Weiser [17, 161] and others
[162, 163] provided when introducing or evolving ideas aridgiples about ubiquitous computing.
In that case, context awareness is intended as either therass of situations and conditions char-
acterizing sensor devices surroundings or the behavitivjtgcand status of the person carrying the
sensors in order to provide smart ways to facilitate andarphteraction between machines and
humans. Thus, context is seen as the collection of happemirmyind a monitored subject and the
response of the subject to such those happenings. The wpfk,iR0, 19, 21, 20] are examples of

86

how sensing systems are adopted to infer such a contextrdedéoage context awareness. In some
cases external sensors, i.e., not part of the mobile pheel, iare also needed [20, 71] in order to
perform accurate context inference. The authors of [16é]the word context to mean location
awareness and propose applications that efficiently builtbp of it. A very large body of work
focuses instead on the use of various sensing modalitiésasuaccelerometer, magnetometer, gyro-
scope to infer a person’s activities for different appiisas [28, 11, 27, 26, 14, 165, 166, 167]. The
authors in [168] present an approach to help discover thii@osf the phone on a person’s body.
The work highlights two limitations: it uses simple heudstderived from a small training data set
to determine the classification rules, and it uses a singlgalitp approach, i.e., the accelerometer.
We instead rely on a systematic design using machine lepalgorithms that are more scalable
and robust than simple heuristics and consider a largeningidata set from multiple positions on
the body and different scenarios while using a multi-semsiodality approach.

3.8 Summary

In this Chapter we presented the design, implementatiahggaluation of the Darwin system that
combines classifier evolution, model pooling, and collakige inference for mobile sensing appli-
cations on phones. The classifier evolution method predentthis Chapter is an automated ap-
proach to updating models over time such that the classiiersobust to the variability in sensing
conditions and settings common to mobile phones. Mobilenpe@exchange classification mod-
els whenever the model is available from another phone, #ilesving mobile phones to quickly
expand their classification capabilities. Collaboratwieience combines the classification results
from multiple phones to achieve better inference accuradycanfidence. We implemented Darwin
on the Nokia N97 and Apple iPhone in support of a proof-ofemm speaker recognition applica-
tion. We also showed the integration of Darwin with some deqmglications. Our results indicate
that the performance boost offered by Darwin is capable feeiting problems with sensing con-
text and conditions and presents a framework for scalingsiflaation on mobile devices. Future
work will consider duty-cycling techniques for better egerconservation and studying simpli-
fied classification techniques, for example, building mammputationally light GMMs for mobile
phones without impacting performance. We believe the dgveent of such a classification toolkit
for mobile phones will enable new research on phones for hureatered applications.

We argued that phone sensing context is a key system compfondature distributed sensing
applications on mobile phones. It should be designed to barate, robust, and low cost. We
discussed our initial work on the Discovery framework thatgout of our work on the deployment
of two continuous sensing applications implemented antbgted on Nokia and Apple phones. Our
initial implementation and evaluation only focuses on aitlih set of sensors/contexts, but looks
promising and, as an idea, it has potential, when implendeintéts full form, to become a core
component of future mobile sensing systems.

In this chapter we have presented a mobile sensing distdland collaborative inference frame-

87

work designed to address some of the issues discoveredydharCenceMe deployments discussed
in Chapter 2. In the following chapter we present a largéescmbile sensing application aimed at
characterizing people and places in space and time. Weialsasg a preliminary approach towards

techniques that could be used to provide inference lab&latin for mobile sensing applications
running in the wild.

88

Chapter 4

A Large-Scale Mobile Sensing Application for
People and Place Characterization

4.1 Introduction

The popularity of smartphones continues to increase, Whidechnological divide between these
and more powerful computers diminishes. Accordingly, a pavadigm is becoming evident: peo-
ple are replacing their personal computers with smartphoféhe mobility and power afforded
by smartphones allows users to interface more directly antirmiously with computers than ever
before. At this writing, smartphones control a 30% stakehin)S market [169] and have an ac-
celerating growth trend worldwide. As such, the global dgraf smartphones will provide ground
breaking means to characterize people and their commsinésewell as their utilization of spaces.
These possibilities are facilitated by large-scale distion systems, increasing hardware support
(battery capacity, CPU, RAM), and improving sensing caliads.

Sensor-enabled smartphones are becoming a mainstredormldor researchers to collect
information-rich data because smartphones allow the ctexiaation of human activities and con-
text at scale [14, 40, 41, 15]. For instance, researchers hs®d mobile sensors to collect mea-
surements of pollution and audio noise levels without fixgfdastructure by mounting sensors on
bikes [70]. They have exploited aggregated location tracesalyze how people move in urban
environments [170, 171]. And they have used contextual ttafmoduce improved local search
results [172].

We believe that continued research in smartphone sensihgllew us to characterize people,
places, and communities as never before possible. As a xasgk, CenceMe [14] is an applica-
tion that infers a person’s activity and context using npldtisensors in a mobile phone. Figure 4.1
shows CenceMe data collected in Hanover, New Hampshiresovemth across 20 users. Activities
such as sitting, standing, walking, and running are aggreg represented by colored markers.
We can easily examine the geographic distribution of basindn activities and reason about loca-
tion relationships. For instance, the red circle in Figuferarks the Computer Science department
at Dartmouth College, which is mainly characterized by thigtihg” inferred state. CenceMe’s in-

89

&)
L]

e © e @©

Figure 4.1: CenceMe inference labels generated over a month acrossbirsuin Hanover, New Hamp-
shire.

ference is in accordance with the nature of a computer seidapartment, i.e., the department is in
an office building where people are mostly sitting duringrtivrk hours.

The CenceMe example helps us to understand the significdra#lecting data using a con-
tinuous sensing application running on multiple smart@sonWe are given the opportunity to
characterize spaces at a very fine grained level, which iergéy impossible without burdensome
subject polling. Such information may be useful, for exaampb help city managers understand
how people exploit urban spaces, resulting in improvedugidanning. Alternatively, physicians
may learn the health behavior of a community and use thigrimdition for community health as-
sessment and recommendations. Distributed sensor magitand inference can provide real-time
insights, augmenting inter-person interaction, as welhgeractions between people and spaces.
Questions we may answer include: what music is being playadarticular club right now, how
many people are at the club, and what are their demographds®re is the quietest place in the
city to read a book? How many people are jogging in the paikt mgpw, so that | won’t be alone
during my run today?

This Chapter presents VibN, a continuous sensing applicdtr smartphones. The goal of
VibN is to answer questions such as those posed above bytinjlesensor data, executing infer-
ences, and presenting results to users that inform thenaininge about “what’s going on” around
them. VibN automatically provides structured visual imi@tion about the places people spend
their time by displaying real-time hotspots of the city, atnive call Live Points Of Interest (LPOI).
We think this paradigm poses vast improvement over otheratsdtiat are constrained by manual
input, such as [173]. A LPOI, which is derived from a backehstering algorithm, is represented
by the demographics of its inhabitants, such as averageratje,of men and women, and their
relationship status. VibN allows its users to replay histdrLPOls, encouraging observation on
how hotspots and their demographics evolve over time. Bwiork, we define a point of interest as
any location where people spend a significant quantity of thee. Thus, places of work, living,
and entertainment are points of interest.

VibN also introduces a new dimension to micro blogging tiglothe Vibe it! feature, which

90

iOS and Android VibN client VibN backend

comms manager <:> web service interface
user feedback LPOI audio
manager manager anonymizer
duty
cycling @ ﬂ_,
manager | | Personal data |:> personal .
manager data cache LPOI clustering VibN storage query handling
engine
j T cache
sensing manager VibN index
‘ location ‘ ‘ accelerometer‘ ‘ audio ‘ service
privacy control manager

(a) (b)

Figure 4.2: a) Architecture of the iOS and Android implementations oa gihone; b) architecture of the
VibN backend.

allows a user to record audio commentaries. Audio inputides/richer means of building un-

derstanding about locations, activities, and events tharctirrent short text microblogging model.
However, because VibN is founded on an opportunistic sgngaradigm [4]—where the user is
not an active participant in the sensing phase—it also pnesitly records short audio clips in the
background to provide near continuous audio context. Satgnd audio containing voice are fil-

tered out from the clip to preserve the user’s privacy. Vildbaautomatically and transparently
builds a personal diary, giving the user an opportunity @ackrlocations of significance and related
audio vibes. This Chapter discusses our system desigreimgpitation, and evaluation of VibN.

Additionally, this Chapter discusses a novel methodolagyirfferred label validation. Because
ground truth evidence is unavailable “in the wild,” we prepdo exploit a multi-sensing modality
approach to validating inferred labels. Validation is a kégp to ensuring that the data collected
in the wild by a mobile sensing application is reliable. Asda we know, our methodology has
not been applied to large-scale inference applicationayepénts. We show preliminary results
demonstrating the method utility.

In summary, these are the key contributions of our work: @) show that VibN, by running
continuously in the background on mobile phones, is ablén#wacterize the way people and com-
munities interact with the locations they inhabit; (ii) weepent the design, implementation and
evaluation of VibN, which has been deployed at large scateutih the Apple App Store and the
Google Android Market [174], and used by over 500 users inghweeks of operation; (iii) we
present an approach for an inferred label validation metlogyy.

The Chapter is organized as follows. Section 4.2 presestdétniled design of the VibN ap-
plication, followed in Section 4.3 by a discussion of a nevihmod for inferred label validation. We
comment of the privacy aspects of VibN in Section 4.4. Sedli® presents the system implemen-
tation and evaluation. We discuss related work in Sectién @nd a summary of the Chapter in

91

Section 4.7.

4.2 Design

In this section, we present the design of the VibN applicatio the phone and of the VibN backend.

4.2.1 Phone Client

The VibN iOS architecture is shown in Figure 4.2(a). Thentlis modular in design and can be
implemented on both the iOS and Android platforms accortlintpe same principles of flexibility
and efficiency. In the following, we describe VibN’'s compateand design principles, followed
by native differences that impact implementation.

Algorithm 3 Pseudocode for the localization engine duty-ogling manager.
SHORT-TIME-INTERVAL « 5 seconds
LONG-TIME-INTERVAL « 30 minutes
locError «— LOCALIZATION-BOUNDING-ERROR
{Application bootstrap
previousLocation— lastKknownLocationFromLocalDB
Line 6:
counter— 5
while counter> 1 do

{Retrieve new location valge
location«— newLocation

if (location+locError> previousLocation) AND (location-locErrog previousLocation)hen

previousLocation— location
upload location to server
sleep(SHORT-TIME-INTERVAL)
end if
counter«~ counter - 1

end while

{Next sampling scheduled after LONG-TIME-INTERVAL
sleep(LONG-TIME-INTERVAL)

go back to Line 6

Sensing.We use accelerometer, audio, and localization sensor diatauf application. A sens-
ing manager activates sensors according to the directifvasdaty-cycling manager. All data is
sensed transparently, except for audio sensing, whichlsarba activated by the user. Transparent
sensing occurs in the background without the user’s activigipation. Background audio “vibes”
are introduced to periodically capture a person’s contéle Vibe it! feature allows active partici-
pation by the user, in which they can initiate recording oharsaudio clip. Everyibe it! clip is
geo-tagged before being uploaded to the backend serveseAdlor data is handled by two compo-
nents: the personal data manager, which is responsibladqédrsonal diary points of interest; and

92

the communications manager, which handles bi-directionaimunications with the VibN server.
As discussed in Section 4.2.1, the iOS and Android platfdmme different methods for handling
their native location and audio engines; VibN has been adiaat accommodate these differences.

Duty-Cycling Manager. The Duty-Cycling Manager orchestrates sensing-sleepyiatgs in
order to optimize resource usage. Itis important to case@llocate duty-cycles for mobile sensing
applications in order to conserve resources, in partideddtery power. We emphasize localization
engine (GPS, WiFi, and cellular) regulation, the contirsiage of which can dissipate a phone’s
battery within a few hours (refer to Section 3.3.4). VibN @ wlesigned for continuous location
tracking; its goal is to identify significant points of inést. We conjecture that people tend to spend
at least 30 minutes at a time at important locations, sucheakdme, work, gym, restaurants, clubs,
etc. We leverage this assumption and design the duty-gyaeligorithm to activate the localization
engine after long intervals (between 30 minutes and 1 hawt)raport data to the server only if
the location has remained static. In this way, we maximizelitelihood that the system captures
locations that are visited for intervals longer than thess€n sleep cycle, while ignoring places
visited for short intervals.

Pseudocode for the localization duty-cycling algorithrstiswn in Algorithm 3. There are two
advantages to our approach: it extends the battery lifebiynapplying long sleep cycles; and it
promotes data pre-filtering for a server-side LPOI clustgalgorithm. By scheduling localization
data uploads according to visit duration, the clusterirggpithm processes less data and the data
more easily groups by location. Contrarily, if the applicatsends continuous streams of location
data, the clustering algorithm would need to process dathishess structured, requiring longer
convergence times and, most likely, reducing the cluggeaitturacy. The performance of the LPOI
clustering algorithm is shown in Section 3.3.4.

The duty-cycling manager also regulates sampling interf@l background audio recording.
Audio recording is randomly triggered every hour accordiaca coin-flipping mechanism (i.e.
audio is recorded if a generated random number between 0 srgtdater than 0.5).

Personal Data Manager. This module manages the user’s personal diary by: detemnmiii
a data point (location, or location plus audio vibe clip) iaew significant location for the user;
and inserting the new data point into the personal local dathe. The personal data cache is
built according to a double first-in first-out (FIFO) quelwgipolicy. One queue contains a user's
significant locations, while the other queue stores the paiats for each significant place. The
reason for using FIFO queues to handle personal data ratoeah unbounded diary is to minimize
the local storage footprint.

Since this data is only meant for personal consumption, &iegmal diary is not uploaded to
the server and never leaves the phone. By keeping persa@alodal to the phone, we minimize
the risk of external attackers retrieving private inforioat The personal data manager determines
the significance of a location by analyzing the duration ofaris visit. If the visit exceeds a time
threshold, then the manager flags the location as signifigd@empirically use a fixed threshold of
two hours, which we believe to be reasonable considerirgt@ple often visit significant locations

93

wtll ATET = 11:54 AM v 5 will ATET = 6:20 PM

¢S VibN persohal () \ i Back Place Details

Here is your personal diary for this

place

loudspeaker @

s 66 10 the detalls o I 2010-11-03 at 6:16 PM
0 to the als view

2010-11-03 at 5:57 PM P
2010-11-02 at 7:12PM P

2010-10-30 at 3:57 PM

(a) Personal view on the iPhone. (b) Personal details on the iPhone.

& HE®Q 12200

here's your personal diary for
this place

17 November 2010 18:38:11
17 November 2010 17:38:11
17 November 2010 16:38:11

17 November 2010 15:37:11

(c) Personal view on the NexusOne. (d) Personal details on the NexusOne.

Figure 4.3: VibN personal view and personal details view on the iPhortetha NexusOne.

94

such as the office or home for longer periods. We realize kigpblicy may not generalize well to
all users, since people have different living habits antestyFuture releases will give users direct
control over this parameter.

The VibN personal view is shown in Figure 4.3 for both the i®@8 Android implementations.
The personal view allows a user to examine their life patte@reen blobs (Figure 4.3(a) and
Figure 4.3(c)) visualize locations that the system deewpsifsiant. By tapping a green blob one
can examine personal activity details, such as, the timesadibn was visited and the audio vibes
recorded (Figure 4.3(b) and Figure 4.3(d)).

LPOI Manager. The LPOI manager maintains up-to-date live and historicéhts of interest
on the phone and partitions them by time windows. Points tefr@st are refreshed in two cases:
when the application is being launched; or when the apjdicatesumes from the background.
Upon refreshing, the application automatically downloadints of interest co-located near the
user. A bounding box is defined to be twice the span of the leisbreen map’s latitudinal and
longitudinal scope. When the user zooms out on the map,ofimterest within the new bounding
box are fetched from the server.

The data associated with each point of interest is manag#ueqohone according to a caching
mechanism. The cache is designed to strike a balance betaesdrstorage constraints and fre-
guency of server download sessions. For each LPOI, the asdetch up to ten audio vibes. Once
downloaded, the audio vibes are stored locally and areadblaifor future access. Besides its audio
vibes, a point of interest is characterized by the demogeapif its visitors. Demographic metrics
include average age, average relationship status, aneégestib. In the current implementation,
demographic information is manually provided by users adpplication’s settings. In the future,
we plan to leverage the sensors to automatically infer deaptgc data. For instance, voice pitch
detection may be used to infer gender.

As the LPOI manager receives points of interest from theesgitvpartitions them according to
time. A “live” bin receives points of interest derived fromitiity in the last hour. Historical bins
are used to replay LPOI evolution over time (up to a month édirrent implementation) by means
of a graphical slider (see Figures 4.4(c) and 4.4(d)). Thtotical view allows easy identification,
examination, and comparison of consistent hotspots veéransiently popular locations. Views of
the live and historical points of interest, which are repraied respectively by red and blue blobs, are
shown for the iOS and Android implementations in Figure 84%.looking at a point of interest’s
details, we may observe how the demographics of a hotspet ttzanged over time. Figure 4.5
shows that there are 50% males, with a mean male age of 33, imeate age of 26, and 50%
single status for a particular hotspot.

Comms Manager. The phone communicates with a server to facilitate locatiod audio
uploads, as well as points of interest and audio downloads. ug¢ the JSON format for data
exchange, which follows a query-response pattern. Theeljoeries the server for information
and the server responds with the requested data. Interaetib the server is driven by the sensors’
duty-cycle. The phone triggers interaction only when sedsta is available, when the application

95

-~
-

(a) Live view on the iPhone. (b) Live view on the NexusOne.

¢ X

(c) Historical view on the iPhone. (d) Historical view on the NexusOne.
Figure 4.4: VibN live and historical views on the iPhone and the NexusOne

96

will ATET = 10:17 AM

f o Place Details ‘

50% women with average age 26.
50% men with
average age 33.

50% of people are single.

loudspeaker

® 2010-11-19 at 12:53 AM P

® 2010-11-18 at 11:55PM P

® 2010-11-18 at 10:53PM P

Figure 4.5: One of the LPOI details on the iPhone.

is launched, or when new points of interest need to be fetched

Privacy Control Manager. This component manages sensor access permissions agctrdin
the user’s privacy settings. It supports user editing ofgmy settings in the local sqlite database
and grants the application access to a sensor only if thehaseagreed to its use. More details on
privacy management are given in Section 4.4.

User Feedback Manager.User studies, in which users are asked to report on theiriexpe
or to suggest new features, are necessary to assess thenaerée of a system. However, it is not
always possible to collect the same quality data for laagdesdeployments as for small and medium
scale projects, as we have less control over compliancet aaikkis more time to distribute surveys
over a large population. VibN’s solution is the User Fee#tblslanager, which can dynamically
survey users by presenting questions directly to the cliévé are able to push down new survey
guestions from the server as new needs arise. Answers aradagl to the backend providing us
immediate access to important usability data.

Differences between Vibe iOS and Android

While the VibN iOS and Android implementations respect thlghtevel architectural design guide-
lines of the system discussed above, these platforms prdifiemences in some of their basic low
level functions. In particular, the respective platfornamdile localization, accelerometer manage-
ment, and audio recording differently. These functionsdma&t with separately for each platform.
Localization. The Android location engine is more flexible than the iOS derpart. It al-

97

lows the programmer to individually enable localizationmgmmnents such as GPS, WiFi, and cel-
lular. This makes it easier to optimize resource usage, iticpéarly power. Phone resources
demand careful handling when designing continuous mobitsiag applications, and the individ-
ual management afforded by the Android provides increaseibflity. The iOS, however, provides
less fine grained control. The programmer must specify aatb$dcalization accuracy, which is
parametrized in three levels: low, medium, high. The OSfitdecides which localization com-
ponents to use in order to meet the accuracy requirements.ladk of low-level control hinders
thoughtful resource management by the programmer.

Accelerometer. Smartphones’ sensors have been mainly introduced to ealtheaiser expe-
rience when interacting with the devices, e.g., flippinguker interface from landscape to portrait
mode with the accelerometer. For this reason iOS currehtiyssdown the accelerometer when an
application is pushed to run as background process sinoe ieo active user interface that needs
the accelerometer support. The consequence of this appi#tte impossibility to rely on a con-
tinuous accelerometer data stream, which is the found#tioreliable activity inference. Android
OS, instead, maintains the accelerometer active even aeapplication is sent to the background.

Audio recording. To ensure ease of portability and analysis, we opt for sjoaundio vibes in
“wav” format. The iOS provides native routines for rendgrand reading wav files. However, the
Android does not. We were required to write custom Java codbfilding a wav file header and
appending the PCM audio payload.

4.2.2 Backend

Data Collection. The VibN phone client interacts with the backend using wealise interfaces
supported by the Pythomeb.pyframework under a standard Linux distribution. The JSONnfatr
is used for data exchange. The VibN data, which we desigisdtétzes,” consists of the following:
1) location-only vibes; 2) audio vibes captured by the agion automatically; and 3) audio vibes
generated by th&/ibe it! feature. Vibes are stored in the backend using both a birtarage
service and an indexing service. The indexing service pedsimilarly to a distributed hash table,
while the binary storage manages large binary files. Thexisdevice allows VibN to store simple
metadata about media and execute queries about it. Wherdan\dbe is uploaded, it is indexed
by the indexing service so that the vibe and its associatetitlm can be retrieved later.

In order to preserve the privacy of users we treat autonigtisampled audio vibes differently
than theVibe it! audio vibes. When initiating an audio recording wittbe it!, a user implicitly
acknowledges that data collection is taking place. Howéarkground audio vibes are generated
without user participation. For this reason, we apply armtigm that anonymizes audio vibes
automatically recorded by the phone. The algorithm remebest portions of audio from the au-
dio stream at regular intervals so that background soundseadentified (e.g., the sound of a
car or music) but the content of conversations cannot benstiaacted. Two parameters drive the
algorithm: the frequency and duration of the audio supjwass We determine these parameters
empirically with the twofold goal of preserving backgrousaund recognition and rendering con-

98

versation unintelligible. This algorithm is not applied\ie it! audio vibes.

Query Handling. When fetching LPOIs, the phone client issues queries iretfgrim for each
LPOI. These contain a location, a bounding box represetitiedg.POI’s region, and a time window.
The time window designates the time range used for aggregdtta in the historical view. There
are six possible time windows, ranging from three hours te mronth. By fixing window size
options in advance, the clustering algorithm can asynausly compute the points of interest for
each window so that content is immediately available uparguGiven the location, the bounding
box, and time window, a query is served by retrieving contieath the indexing service.

Clustering Engine. The clustering algorithm runs as a background processcheynously to
client queries, and it is based on the density-based spdtistering (DBSCAN) technique [175].
The reason for the adoption of DBSCAN is that, by being dgrisitsed, it operates in an unsu-
pervised manner without requiring the number of clusterse@omputed as input parameter like
for K-Means. Clustering runs are processed on a locatieratild a time window. We use location
tiles of size 120 by 120 km and time periods ranging from 3 &doias long as 1 month. Our clus-
tering machine works on a schedule, where each entry is dfisgecation tile and time window
combination. The output of a clustering run is a set of podftmterest, stored as a record in the
indexing service. This record also includes the list of audbes, timestamps, and demographics
information associated with the point of interest.

In order to optimize the clustering process’s scalabilitd aesponsiveness, computation is dis-
tributed across multiple machines; each machine operatdiferent sets of tiles. When computing
a tile for a time range, the machine registers itself atafitation and de-registers once the task is
completed. The cluster scheduling is designed to give iprits the most recent points of inter-
est, i.e., those within the last hour, and to tiles contagjriilgh density of vibes. In this way, we
guarantee that live points of interest with high uploadsate most often re-computed.

Sometimes points of interest cannot be computed becaussaareity of vibe uploads. This
condition arises, for instance, immediately after the @mpgibn launch, when there is a small user
base. When data is too sparce for clustering, we rely on astvapping strategy. A new process
is spawned that executes a request to Yelp or Bing to prowigplementary points of interest. In
our current implementation, we use the Bing service, sinlas a less constrained policy about the
rate of queries it accepts.

Scaling. To handle scale and guarantee backend robustness, we ugeiiastic Cloud ser-
vices. All the components reported in Figure 4.2 run on alsingachine, except for the clustering
process, which is distributed across multiple machine® advantage of the elastic cloud service
is that machines can be promptly instantiated or terminbtesgd upon demand. This is a desirable
feature when the user base changes over time and rapidradjutstto the backend might be needed
to accommodate the application’s demand.

99

Table 4.1: Examples of microblog posts and sensor data from the Apg&ienceMe data set.

CenceMe Microblog Post | Sensor Inference
At work Sitting

Reading at the harbor Sitting
Out of work, going back home Walking

4.3 Data Validation Methodology

Mobile sensing applications deployed at large scale peoaithechanism for collecting tremendous
amounts of interesting and potentially useful data. Howewhen an application is deployed in
the wild, there is no inherent method for the developer tifwarhether inferences are meaningful
and correct. For instance, if a mobile device reports thagragn’s activity is walking, we lack
ground truth, or supporting evidence that the person isadigtwalking. Rather, an inference may
be the result of a false positive misclassification. Whil®eeous classification may be tolerated in
leisure applications, it may not be acceptable for moréatitpplications, such as those that assess
wellbeing or health. Yet establishing ground truth can bstlgp how can accuracy be verified
without burdensome polling of its users? We propose a tgclento boosting sensing inference
accuracy and trustworthiness by mining multimedia confsmth as microblog posts, public point
of interest repositories, videos, photos, or audio clipa} have been posted temporally near to the
inferred activity. We call this techniqueensor inference validation methodology

Microblog posts via Twitter, Facebook, MySpace, etc., apppular form of communication.
Such channels encapsulate valuable information aboutotitext of a person. Text messages sent
by phone may also be mined for bolstering inference. Gegteat information can be exploited to
hint at the nature of a person’s concurrent activity. Whyeadloit rich coexisting data to buttress
sensing inference? We may seek correlation between mulidtextual content posted by a person
and the actual activity sensed by the phone. For exampledfidle phone’s sensors report “sitting”
accordant data, the phone might actually be sitting on & tahile the person is moving. However,
if by mining the person’s last microblog message we learn tia person is “watching TV,” we
achieve higher confidence that the person is indeed stagioBamilarly, if a person is reported as
“running” while they are microblogging about going to thengywe can reason that the person is
probably engaged in the activity of running.

An example of correlating microblog posts and inferredvétgtis shown in Table 4.1. The data
has been culled from the CenceMe [14] data set; the micralmegsages have been posted from
within the CenceMe application. From this example we carilsagt is possible to draw reasonable
correlations between user-driven input and an inferreiyigcby using time-based accelerometer
sensor data. Being at work or reading a book usually impiitds inotion. In the same example, a
user is inferred to be walking when they have posted that gheyeturning home. In these cases
we are given the opportunity to attach confidence to infelabdls by correlating sensed data with
microblog posts.

100

Table 4.2: Inferred states, based upon combinations of sensing ntiedali

| Inferred State [[Activity Classifier | Audio Classifier | Location Change Classifier |
Street: Walking Walking Street Sound Low
Street: Standing Stationary Street Sound 0
Street: Running Running Street Sound Low
Office or home: Standing Stationary Quiet 0
Restaurant: Walking Walking Noisy Business Low

The basis of our validation methodology is that we explaihaetic keywords and characteristic
features of multimedia content, location, and sensor didgng this approach, we can identify, flag,
and discard inference labels that might lead to inaccumatelasions; detect deliberate attempts to
perturb automatic inferences; and refine inferences duadstipnable sensor data.

Although the range of possible human activities is high seteof possible inferred states is con-
strained to those most commonly found in daily routines, ab &s the range of classifier outputs
available from the sensed data. Our methodology operatéisrea levels to validate an inferred
state. First, on labels inferred by sensor-based classifiecond, on low level sensor feature vec-
tors; and third on microblog text. On the first level, infelreensor-based labels are exploited to
support cross label validation. On the second level, wectiefiferences between a user’s sensor
data feature vector and a training feature vector. Fina#tylook for semantic matches between mi-
croblogs and location metadata. The validator's outputsistaf inferred state weightings, where a
weight is associated with a confidence level for each passilierred state.

As an example, we use the CenceMe application [14] data. Wetheee classifiers that output
labels. The activity classifier operates on the accelerendzta and returns the following labels:
stationary, walking, running. An audio classifier recogsizacoustic contexts such as an indoor
office or home, street sound, or noisy business. FinallyJdbation change classifier labels how
quickly a person’s geospatial location is changing. In owneple, we work with a small set of
inferred states, some of which are listed in the left handrool of Table 4.2. However, this model
may generalized to a larger inferred state space.

A confidence-weight associated with a state is calculatédyiormula 4.1:

St B+ Y F+M
N+Z+1

ConfidWeight= , (4.1)

whereN is the number of label classifiers adds the number of sensor feature vectors. In Table
4.2, there are 3 label classifiers, listed in the header fothtee right hand column®, F, andM
are boolean, such thBt is 1 if thei-th classifier is evaluated to true with respect to an inféstate.
Fj is equal to 1 if the Euclidian distance between the sensddréegector and the training feature
vector for an inferred state is below an arbitrary thresthld/ is equal to 1 if there exists a match
between any of the keywords in a person’s microblog messagj¢ha keywords extracted from the
Geographic Information System (GIS) metadata or a locathkean the location.

The validation methodology is designed to attribute lowanfitlence to an inferred state when
individual classifiers are well-aligned but the underlyingut space is not. For example, assume

101

other o+ » @0 10 shaking :
groundtruth
groundtruth ° inference +
inference + running
0 0
2 8
s S
= speech tems e o e > walking {+ - " i
Qo £
h=] =
2 g
standing -+ ERs O+ 8 +
quiet H—H-—m— - i sitting He-+—@——— e —@we —»
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Time [hours] Time [hours]
(a) Audio inference labels and ground truth. (b) Activity inference labels and ground truth.

Figure 4.6: Sparse ground truth and inferred labels over time. It mighpdssible to build models to predict
inferred labels from sparse ground truth events.

that we intend to validate whether a person’s activity éfeesds accurate. We can collect data from
an audio classifier, a location change classifier, and miiogotext. The phone’s activity classifier
reports “running.” Yet the other data streams indicate satgant scenario: an audio classifier
indicates a noisy business; there is no significant spat@lement (as indicated by GPS), and
the user has used the word “pizza” in a microblog. Each of thssifiers are withirf Euclidian
distance from the training data. Given the restaurant saerfeunning” would receive a confidence
of &, while “not running” would have a confidence &f1.

4.3.1 Future Work for Data Validation Methodology

More research is needed to develop a complete and effeclidation methodology solution. We
are planning to introduce two techniques, designed to wodoncert as part of the data validation
methodology.

The first technique is about exploiting the correlation lestw events that occur near in time,
given that human activities and behaviors tend to clustthima certain time interval. For example,
if a person is sitting at the office, it is likely that they haween sitting for some time already and
they will persist in the same state for some time in the futugmilarly, if a person is jogging,
the same activity can last for a certain amount of time. Oaait to seek correlations between
ground truth hints, sparsely collected from users, and thssifiers’ inferred labels for past and
future time intervals. To better understand this approachigure 4.6 we report some results from
an experiment we conducted in campus with the VibN apptoasind 20 participants over a period
of three weeks. Each user has been randomly prompted dimeénggly (at most 10 times) to report
their actual activities, context, and location. The go#bisee if we can exploit a ground truth event
to guess the user’s activity and context in a time intervattex@d around the ground truth event
itself.

Figure 4.6 shows over time the ground truth events provigeahle of the users and the output of
the classifiers. From Figure 4.6 we can see that a given groutiddata point tends to overlap with

102

phone

location

Fo$;TSuare, — | atus
inferred correlation?

label {——) |web mining

Figure 4.7: Inferred labels validation flow involving external sour@ésnformation such as public points of
interest, expected behavior public database, and web gieahniques.

the classifier labels for time intervals centered aroundytibend truth report. This preliminary ex-
periment provides a promising indication for the possipilo exploiting sparse ground truth labels
as a way to validate inferred labels in a time interval caextdtearound the ground truth timestamp.
Thus, we hope to be able to design models that validate addabels for which we do not have
ground truth evidence. In order to accomplish our goal, wkbwild on previous work that models
physical activity inference using wearable sensors [17&]ere is another challenge, which is to
find ways to collect ground truth labels from users withoutgibly interrupting daily life routines.
Prompting a person too often for ground truth collection lddonply poor user experience, with the
result of having any application designed for data val@tatinethodology rarely used or not used
at all. A successful data validation methodology shouldtie o collect ground truth labels while
at the same time engaging a user for long periods of time. i§etid, we are planning to leverage
some of the Von Ahn’s invisible computing principles [177].

The other approach we are planning to introduce as part ofaigation methodology is taking
advantage of the large corpus of information from thirdipaources as a means to build stronger
confidence about a certain inferred label. We plan to moveretyhe preliminary approach pre-
sented in the previous section, where we take advantagéooikmowledge for a place (represented
in Table 4.2) in order to verify if a certain activity is liketo happen in that place. The idea is to
adopt a more general approach through which validatingriedidabels without possibly the need to
specify prior knowledge manually (as in Table 4.2). In orgedo so, we rely on the algorithm rep-
resented by the flow in Figure 4.7. Starting from the latitade longitude coordinates associated
with an inference label, we can exploit off-the-shelf palgbint of interest databases to retrieve the
category of the place. Examples of categories are restaumaiseum, gym, coffee store, etc. This
information can be obtained exploiting publicly availapl®gramming interfaces of popular point
of interest or local search providers such as Foursquatp, &®ogle, and Microsoft Bing. After
a category for a given place is retrieved, we can determi@erthst likely activities and behaviors
that are going to be observed in that place. To retrieve gh@fiactivities associated with a place

103

0.8

0.6

04

Label Density Score
Label Density Score

0.2

running walking standing sitting quiet talking noisy
VibN Labels VibN Labels

(a) VibN activity inference label distribution in the web(b) VibN audio inference label distribution in the web
documents for the gym category. documents for the gym category.

Figure 4.8: VibN inferred labels distribution from the web documentsgbysical activity and audio context
for the gym category.

category we can rely, for example, on the American Time UsgeyuATUS), an initiative of the
US Bureau of Labor Statistics to keep track of the amountroétpeople spend in their own ac-
tivities and where [178]. From ATUS it is possible to obtaifisa of activities that people usually
perform in each place category. Having retrieved the ligtaiple’s activities and behaviors for a
certain place, we then exploit content-rich web documemfmt correlations between our inferred
labels and the content of these documents using a similaoagip as in [179]. We mine the web
to obtain information about how the activities retrievednfr ATUS are performed and we use this
information as a form of ground truth. For example, if thecgl@ategory is “restaurant” and from
ATUS the most likely associated activity is “eat a meal”, ougb query would be: “how to eat
a meal”. In response to this query we download 100 web pagetifigkd by the first 100 hits.
This threshold has been chosen meeting the requiremenli¢gtcas much information as possible
while still being able to analyze the corpus of documentsarably fast. We then try to see if our
inference labels occur in the web documents we have dowetbad

The larger the correlation between the inference labelstendontent of the web documents, the
more confident we can be about the correctness of the infexbedibecause from prior knowledge,
i.e., the ATUS activity list, we obtain that the activity oglavior represented by our inferred labels
can be found in the web documents that describe that activibehavior. Conversely, if it is not
possible to find correlations between the inferred labetsthe content of the web documents, a
smaller confidence should be associated with an inferetet. [dhe web documents are retrieved
issuing “how to” queries for each activity identified in th& 4S list for a certain place category. As
the web documents have been downloaded, we need to findatmnsl between the inferred label
words and the content of the web documents. Examples of@tféabels are “running”, “walking”,
“sitting”, or “talking”. In order to maximize the chance ohfiing our inferred label words inside
the web documents we rely on a stemming algorithm step [14&@l]ed to our inferred label words.
In this way, all the words with the same stem are reduced toraraan form. For example, the word
“talking”, after the stemming phase can be considered edpriv to the word “talk” and “talked”.

104

l L
£ o8| g
O O
%} %}
> >
g 06 1 Z
c c
[[
[a} [a}
g 047 1 5
Qo Qo
@ @
- -

7l l]
0
running walking standing sitting quiet talking noisy
VibN Labels VibN Labels

(a) VibN activity inference label distribution in the web(b) VibN audio inference label distribution in the web
documents for the subway category. documents for the subway category.

Figure 4.9: VibN inferred labels distribution from the web documentsgbysical activity and audio context
for the subway category.

At this point, we minimize the chance of missing the word itagkand all the variations of it in the
web document. Thus, if we aim to validate the inferred labidimg, not only do we look for the
word talking in the corpus of web documents we have downldglgt also for all the variations of
the word talking derived by the stemming algorithm. In orttedetermine the distribution of our
inferred labels in the web documents, we also look for theihferred label words in the same
corpus. Following this string matching step, we build ardisition of the most found inferred label
words in the document. If, for example, talking is the mosisgnt inferred label word for a certain
place category, then we conclude that there is a high chaat¢aiking has been correctly inferred
by the mobile sensing application, given the fact that pkimowledge from ATUS contemplates
activities for which talking is predominant.

Figure 4.8 and Figure 4.9 show the distribution of the Viblfeired labels for two different
place categories: gym and subway. These distributions hese obtained from mining 100 web
documents by querying the web with “how 40X, >" queries, where<X;> is one of the activities
taking place in each location, and thereNisof such activities in a location according to ATUS.
The web document analisys is performed by looking for thensted VibN inferred labels into
these documents. If we consider the top two most recurribglda we can see in Figure 4.8 that
running and walking, along with talking and being quiet, #re most recurring activities at the
gym. For the subway, the most present activities are walkingning, talking, and being quiet
as shown in Figure 4.9. We consider this as a promising Initisult. In fact, we are given the
opportunity to validate inferred labels from applicationaning in the wild looking at the presence
of our inferred labels in web documents obtained from thenh@’ queries. If, for example, we
receive a walking or running activity label from a mobile simig application running in the wild,
and the person is located at the gym, from Figure 4.8(a) wklamses with some confidence that
the label is accurate. Similarly, if we receive the talkingl ajuiet labels, we can again associate
high confidence with these labels by looking at Figure 4.8(b)

Our plan is to carry out a more systematic study of the apprgeiesented in this section to

105

make sure to develop a robust and scalable data validatitmoa@ogy that can be extended to a
large body of activities and place categories.

4.4 Security, Privacy, and Trust

Security, privacy, and trust are important matters for neobénsing applications. As such, VibN
attempts to ensure a secure and trustworthy system withotlosving steps: personal diary data
never leaves the phone and the user has full control oveplibaded data is stripped of any details
that could reveal a person’s identity; details on live poiot interest are an aggregate representa-
tion of a location without exposing any individual's infoation; data sent and received over the
wireless link is protected by SSL encryption; users canldigsthe sensors at any time; background
audio recordings are automatically stripped of vocal aoinbe order to preserve conversational
confidentiality.

Future development of this work will implement speechexttranslation mechanisms in order
for a user to post audio vibes in a privacy-preserving manieralso plan to implement location-
driven privacy control, where the system can be told to désabnsors automatically in specific
locations. For example, the home could be designated amsirgearea, so that the system would
automatically stop sensing as a person enters their home.

4.5 VibN System Evaluation

VibN is implemented on iOS and Android platforms, and it iseato run on Apple iPhone/iPod
Touch devices, as well as on multiple Android phones. Thei@®3ementation consists of about
21,000 lines of Objective-C/C code versus 10,700 lines e &ade for the Android. The appli-
cation was released to the public through the Apple App SiakAndroid Market on November
2010. In approximately 3 weeks, 500+ users have downloadddised the application continu-
ously. In this section, we present a system characterizafi®/ibN, and a characterization derived
from the large data set collected from the app store usersfaihas we know, this is the first
characterization of a mobile sensing application releaséarge scale through the app stores.

4.5.1 System Performance

In what follows, we show the performance of the iPhone andrgiddvibN application when run-
ning, respectively, on iPhone 4 and Nexus One devices. $irecibcation engine on these devices
is the main cause of battery drain, we focus on the battexyalfa function of the localization duty-
cycle (refer to Figures 4.10(a) and 4.10(b)). From our erpents, we derive the optimal location
engine duty-cycle time to be 30 minutes. After several weélepplication use, we determined this
to be the interval that minimizes battery usage while ctihgcsignificant points of interest. With
a 30 minute sleep cycle, the iPhone 4 battery duration is 2Bshaersus 40 hours on the Nexus
One. The reason for longer battery duration on the Nexus ©tiat Android provides native APls

106

) o} 1
2 2 No DC —e—
& & DC: 5min —e—
- 1 - 08 DC: 15min —%—
I I DC: 25min —&—
k= 1 s 06 DC: 60min —=—
m m
g] £ o4]
c c
£ £
£] £ 02 1
]]
ox O L L L L L L ox L L L L L L L L L
S e S ° P
2 ¢ % Y % %Y Y %, ", 2 %% %, %, %, %, %, 2, 2,
S S % N e T T e S S SN N N
L Time [sec] L Time [sec]
(a) Battery duration for iPhone 4. (b) Battery duration for Nexus One.
o - —_ No DC —e—
£ 12MB |] 8§ 400KB 1 peismin —o—]
2 1MB I | 2 350 KB - DC:15min —*—| 1
S S 300KB ¢ DC: 25min —&— J
5 4 DC: 60min
}g 800 KB % 250 KB
SRR Kol
= 400 KB —° o
S 200KB —a— % 100 KB
8 gee** . . DCi60min —m— o S0KB
o, 055,045, %0, %, 0,
%%, %, %0, 0, %0, %, %0, ",
S % N T e e
Time [sec] Time [sec]
(c) Tx data. (d) Rx data.

Figure 4.10:iPhone 4 and Nexus One battery duration when running VibNeamount of data received and
transmitted during VibN operations.

loading vibes loading vibes

changing view zooming downloading playing clip recording clip app pushed to

clip background

Figure 4.11: CPU usage and free memory for VibN running on iOS.

107

12:35 AM

) personal ey WS ibN personal @y

= ~%,
#~ 2
;\\\41% 5,

loc2 loc 2 X

Ve —

Sudikoff Lab
Sudikoff L

Figure 4.12: Personal points of interest for an indoor location with ahaie 4. The dampening region
radius is: a) 11m and b) 27m.

to actively regulate the localization components. Thiggithe developer flexibility to build more
power-efficient applications. The total amount of datagraitted and received by the iPhone 4
for different localization duty-cycles is shown in Figurd @(c) and Figure 4.10(d) (the Nexus One
reports similar numbers).

The CPU load and memory footprints for the VibN componenttheriPhone 4 are reported in
Figure 4.11. Memory utilization is not impacted by the seasexcept for the map view and LPOIs
on the map. However, the impact on CPU load from all compan&nevident. Uploading and
downloading data, and playing audio clips require consioler CPU cycles, and imply large battery
drain. These results call for careful use of the audio modaldia mobile sensing application. Our
implementation is such that memory gets released as theaiyph is pushed to the background
(see Figure 4.11). In this way, the performance of the phemet impacted when VibN runs in the
background, and other applications can be activated coarly.

4. 5.2 Personal Points of Interest

Personal points of interest are generated in two differemtsiv when the application runs in the
background, and when a person recordélee it! audio clip. In both cases, given the localization
error (which is larger indoors), we have to ensure that ttstesy does not create different points
of interest for the same physical location. In order to aahithis goal, a dampening scheme is
required. VibN accepts new points of interest only if theydutside a bounding box centered on
the person’s location. The bounding box must be dimensipnagerly so that significant places are
generated when the person moves to nearby locations and signaficant place is warranted. We

evaluated the accuracy of point of interest placement indndocations for different dampening

box sizes, ranging in radius from 11 to 60 meters. The resultvfo indoor locations in adjacent

buildings is shown in Figure 4.12. When the dampening rep@sa diameter of about 30 meters

108

w
Con:ge et :‘:;
> e
_ametery Ln At @
S The Hopkins _?‘ v
04 Center) | ®
Hanover. A . Y 2
Hanover In\ee = N
@ ..n seum Dartmouth
- ollege:
(2]
s s
s
=
«

Figure 4.13: Spurious clusters caused by continuous location data dploa

and the user moves from location 2 to location 1 in an adjabeitding, the significant point of
interest for location 1 is not captured by VibN because itithi the dampening region (see Figure
4.12(b)). We therefore set the dampening region radius thlba so that the two locations can be
distinguished (as shown in Figure 4.12(a)). We found thisev#éo be robust across multiple indoor
locations in different locations. We are planning to introe an adaptive dampening policy based
on the localization error in the future.

4.5.3 Backend Clustering

In this section we discuss the performance of the clustealggrithm running in the backend to
compute LPOIs. We rely on the DBSCAN clustering algorithrqJ, which takes two parameters:
the scope of the clustering (eps) and the minimum number w@f jgiints (k) necessary to form a
cluster. The algorithm’s performance as a function of ssvearameter values is shown in Figure
4.14. The raw vibe locations, uploaded from seven diffel@#tions, are reported in Figure 4.14(a).
After several experiments, we pick k=5 and eps=0.002, whéek to better clustering accuracy
while minimizing false positives. In fact, when a locatiansignificant, several data points can be
found for that place. We fix the minimum threshold to 5 datant®to dampen the impact of false
positives.

We also show the positive impact of the phone data pre-fiiealgorithm discussed in Sec-
tion 3.3.2. Continuous data uploads would generate spidtusters, which are the result of false
positives generated by sparse location data. Figure 4d8ssthe results of multiple phones con-
tinuously uploading data. Data uploads occur at interviless than a minute along a path which
includes the locations reported in Figure 4.14(a), andfstiogignificant times in the same locations.
The density of the vibes is larger in the original seven liocest and lower along the path. It can be
seen from Figure 4.13 that the sparse data along the patbhabés not represent points of interest,
can create spurious clusters. Only four of the original L&€3n be identified (indicated by arrows
in Figure 4.13). Hence the pre-filtering approach on the pHmwosts the clustering performance.

109

&

false
_ |positive [

Figure 4.14: Backend clustering algorithm performance: a) raw locatlata from seven different places;
b) result of the clustering algorithm with k=1 and eps=0)Irssult of the clustering algorithm with k=1 and
eps=0.02; d) result of the clustering algorithm with k=5 apd=0.002

90 20 30 40 50 60 70
User Age

Figure 4.15: VibN users’ age distribution.

4.5.4 VibN Usage Characterization

We report the application usage by analyzing data collefcted the App Store and Android Market
users which, as of the time of writing, is numbered at mora %20.

Demographics.The VibN users demographics characterization is showngares 4.15, 4.16,
and 4.17 for age, gender, and relationship status, regphctilt is interesting to observe that the
average VibN users’ age is below 30 (Figure 4.15).

This data supports the conjecture that the main consumaerstuife social applications from app
stores are young. There is a slight bias towards female (il 6) and single (Figure 4.17) users.
These measurements could be used as an indicator that nsobild network users are mainly
young, single, with consistent female participation. Tihfermation could be used by developers
as a hint to select the target population of their applicetio

Device breakdown.The fraction of Android versus iOS users is shown in Figui84lt is in-
teresting to see that the number of Android users is largar the number of iOS users. We believe
the reason is that Android OS is supported by many diffensargphone models compared to iOS,
available only for Apple smartphones. With its more flexiptegramming platform and absence of
a review process for the release of an application on the ddddarket, Android becomes a very

110

Male Female

Figure 4.16: VibN users’ gender distribution.

Single Married

Figure 4.17: Single Vs not single breakdown distribution of VibN users.

appealing platform for researchers to quickly roll out ni@lsiensing applications at scale.

Usage pattern. The daily and weekly usage patterns of the VibN applicatios raported,
respectively, in Figures 4.19 and 4.20.

It is important to identify the application usage patterwider to design a system that is flexible
enough to be responsive when necessary, for example, tdehbuarbkts of users. In particular,
by knowing when users are mostly active, we design the Vibbkéwad in order to: instantiate
more machines to accommodate high loads during day, and thekeustering algorithm more
responsive during peak hours. This scheduling policy alogsource saving, while driving down
the cost of renting computing power from external cloud mes; e.g., Amazon cloud service.

Privacy Settings. In order to use data for research purposes, it is necessaontply with the
directives of the Institutional Review Board (IRB) univiigscommittee, which requires users to be
informed if their data is going to be used for academic resedro this end, we add an informative
text following the terms of service when the applicationdsvdloaded asking the user whether they

Table 4.3: Fraction of users allowing their data to be used for resepncposes.

Participating| Not participating
25% 75%

111

Android iPhone

Figure 4.18: Fraction of Android Vs iOS users.

Mean Vibe Uploads

0 5 10 15 20
Day Hours

Figure 4.19: VibN daily usage pattern.

would like to participate. The breakdown of voluntary usartjgipation versus non participation
is reported in Table 4.3. These numbers point out an impblkéason: it is still unusual for people
to download research-oriented applications from comrakagip store distribution channels. Thus,
by not fully understanding the mechanisms and the riskdved) people simply opt-out from par-
ticipating. Convincing people to participate to the useasigarch applications remains a challenge,
causing the slow down of the user-base growth and of the dé#lection process.

455 Data Validation

In this section we present experimental results for the dalidation methodology discussed in
Section 4.3. We combine microblog posts, i.e., from fac&bmawitter, with location data, audio,
and activity inference. This helps correct localizationoerand detect activity misclassification
errors associated with data coming from the wild. Reseasdheve shown that the combination of
audio and video/image inference could be used to fingerandtidentify places [41].

However, defining scalable classifiers for each possiblatioic based on a pure fingerprint-
ing mechanism might not scale, nor produce accurate cleetsifin. To this end, we add an extra
modality, which is the microblog post text, as a further waysefine the classification process. By
comparing geo-tagged reviews from popular review sengoes as Yelp, or geo-tagged microblog

112

100
Week Hours

Figure 4.20: VibN weekly usage pattern.

wrong
location

real
location

E South l
Q, 1 South st -
v X

Hom
ib 1‘..-

Currier p,

Figure 4.21: Localization error compared to the real indoor pizza restatiocation.

posts (e.g., from twitter) with local search results or Gé$atbases, we retrieve the most occurring
common keywords. If the found keyword set is not empty, therhave high confidence about the
location where the activity is taking place. Issues migliuwdor nearby similar business (e.g., two
pizza places few meters apart). In such a case, tie bread@hgigues are probably needed in order
to determine where the activity is really coming from. Weerge this to future work investigation.
To evaluate the idea, we carry out experiments with peopewueral locations. We report the re-
sults from one of these experiments where three people gpittza restaurant at different times of
the day. The actual location of the restaurant and the at#din error from their iPhone and Nexus
One are reported in Figure 4.21. The participants are askedite a twitter message or a Yelp
review when at the location. The keywords distribution aetied from the messages is reported in
Figure 4.22. The keywords that are common to the microblagspand the Yelp review or local
search results are: “pizza” and “restaurant”. Since theret any other restaurant in the proximity
of the pizza restaurant, our method allows us to transl@evtiong location to the real one.

As discussed in Section 4.3, we rely on Formula 4.1 to weigbsification labels. We adopt
the Euclidean distance metric to measure, for a certain litngdae distance between the feature
vector of newly sampled data with the training data feat@etar. From the euclidean distance, we
can determine whether a match exists or not by simply usitgesholding approach. If there is a
match between thieth feature vector for modalityand the feature vector expected to be seen for
modalityi in the same place, then tlirgparameter in Formula 4.1 is set to 1. Figure 4.23 shows the

113

pizza
starving/hungry

S
o

2 3
keyword count

Figure 4.22: Keyword count extracted from the microblog messages pdstetifferent people from within
the restaurant.

10

running

sitting/walking

Eucledean distance

0 50 100 150 200
Feature instances

Figure 4.23: Euclidean distance between feature vectors for differetitities, i.e., between sitting/walking
and running.

euclidean distance between the stationary/walking diesvand the running activities. It is clear
that it is possible to identify thresholds discriminatingtlween the two states. Now, assume we are
in an indoor location (home, office, restaurant, etc.). Ieespn tries to deliberately game the system
(for example by rapidly shaking the phone), then the parankgt:ity for the physical activity is
set to 0. Formula 4.1's numerator decreases, consequeasityning a smaller confidence weight to
the activity performed in the particular indoor location.

45.6 User Feedback

The feedback channel allows us to collect valuable infoimnadbout how to improve the appli-
cation according to users’ experience. For example, usgoy deing presented anonymous and
aggregate information about LPOls. However, one commogestipn is that VibN should allow
users to connect with other users, either via text or insteggsaging services. Although we have
not yet implemented such a feature, we realize the impogtahsuch a service. Adding a feature
that allows users to post interesting audio vibes to eachrathmeet other users in LPOIs would
be an interesting option to offer. Several users have egpdean interest in “friending” people they
find interesting, given their significant locations. We ptarintegrate social networking in future
revisions of the application. Other comments, such as wioepéace graphical components of the

114

interface, have been helpful to improve the VibN design.

4.6 Related Work

Smartphones are becoming a mainstream platform for regliziobile sensing applications and
frameworks at scale [41, 181, 59, 85, 182, 43, 183, 14, 15184, Several techniques to optimize
the usage of the phone’s resources for continuous mobikrggapplications have recently been
presented [55, 83, 185]. Researchers consider mobile rseastalable way to collect sensor data
without the need of fixed infrastructure by using ad-hoc eensn moving objects such as bikes
[70], or smartphones’ microphone for audio noise mappirgj.[#hese are examples of techniques
useful to derive sensor data maps of places and cities inlabdéedashion. By analyzing mobile
phones’ location traces, health related parameters suexm@ssure to pollution can be derived
[42]. Optimal fuel efficient paths can also be retrieved bgnboing smartphones and car sensors
[186]. At the same time, there is continuous growth of agpiins designed to promote awareness
of city events [173], or as a means of socially connectingpfebased on location [187]. These
applications are usually user input driven. More recentiegiions allow association of audio clips
with individual twitter accounts [188]. Overall, these #ipations share a similar goal, which is to
meet an increasing interest in gathering real-time infdimnaabout places and to more efficiently
take advantage of what a city has to offer. The goal of VibNoisrteet the demand for real-
time rich content information by exploiting continuous sielg on smartphones. We conjecture
that by being able to characterize places, people, and caitiesuat scale using the ubiquity of
smartphones, while also marrying sensor data and machfeeemnte, we can open the door to
many new dimensions. We may build novel and exciting soaalvarking applications; and we
may design green, health care, and wellbeing applicationgffer new opportunities to urban
planners. These are a few examples of ways to exploit mobiisisg at scale. Researchers have
already started to realize the opportunity behind usingelacale application distribution systems
(such as app stores) to collect data who'’s scope reachesidélye boundaries of a research lab
[189] . A study showing how to apply a multi-modality sensiagproach to correct localization
error has been shown in [41]. Sensor data validation in [#ingeexperiments by relying on user
annotated data is presented in [26][27].

4.7 Summary

In this Chapter we presented the design, implementatiod,eanluation of VibN, a continuous
sensing application for smartphones. We discussed theemmitation of VibN for the iOS and
Android platforms and showed its performance on the Appiwife 4 and Google Nexus One. We
presented the characterization of the application fronrélease of VibN to the public through app
stores such as the Apple App Store and the Google Android &éavie reported the characteriza-
tion of the application from the usage of over 500 users usiwgridwide. We showed that VibN,

115

by running continuously in the background on mobile phoisegble to characterize the way people
and communities interact with the locations they inhabit &0 presented a novel inferred label
validation methodology to weigh the inferred states fromragiven the lack of ground truth sup-
port for mobile sensing applications running in the wild.idls a critical issue for mobile sensing
applications. We believe this contribution is an importsteip forward in support of data validation
and data trustworthiness assessment for large-scalearsaibing application deployments.

116

Chapter 5

Conclusion

5.1 Summary

Supported by advanced sensing capabilities and increasimgputational resources, smartphones
will become ouwvirtual companiongable to learn our lives, react, and propose solutionsreadito
personal behaviors and habits.

In this thesis we have taken steps towards the realizatighi®fvirtual companion vision, by
proposing applications, frameworks, and algorithmic sohs. We followed a systems oriented
approach, in that we relied on live testbeds based on offtiedf smartphones to design, implement,
and test each application, framework, and system. We alsased some of our mobile sensing
applications, such as CenceMe and VibN, through largeesgablication distribution channels such
as the Apple App Store and the Google Android Market. Thushadkthe opportunity to exercise
large-scale testbeds made of 1000s of people worldwide.

The contribution of this thesis can be summarized as follows

We presented the design, implementation, evaluation, aed experiences of the CenceMe
application, which represents the first system that consbihe inference of individuals’ sensing
presence using off-the-shelf, sensor-enabled mobilegéwaith sharing of this information through
social networking applications such as Facebook, MySpaiece, Twitter. We ported for the first
time, off-the-shelf machine learning algorithms to smiaotpe devices showing the great potential
of smartphone mobile sensing for the ubiquitous and perasbimputing landscape. This is a
leap forward from previous approaches, which relied onauatesigned sensing and computing
platforms. We highlighted how machine learning on smant@socomes with severe costs that
need to be mitigated in order to make smartphone sensing conprace. Some of the costs can
be identified with the need to maintain the phone user expegiein terms of battery duration
and the normal mobile phones operations — that is, makingesglving phone calls, and leaving
enough computation resources for smooth user interfaeeaiction. We showed that some of the
limitations imposed by a mobile sensing application canvm¥ame by splitting classification and
computation between the smartphone and the cloud, and htifideg features that are cheap to
compute, yet effective. We showed that duty-cycling semaimd inference routines can be adopted

117

to tradeoff the smartphone resource usage versus infeaesoeacy. We reported on our experience
deploying CenceMe at scale through the Apple App Storeilligion system.

We presented Darwin Phones, which aims to address some ci#dfienges discovered during
the CenceMe deployments. These challenges are: (i) thngezmntext, which renders some of
the sensors unsuitable for some sensing tasks; (ii) mghithiich reduces the time a mobile phone
can be exposed to an event to be sensed; (iii) and limitedifikxrsscalability, because an initially
trained classifier might not be able to perform well in thedwi all possible conditions. Darwin is
an enabling technology for smartphone sensing that coraliokaborative sensing and classifica-
tion techniques to reason about human behavior and comextabile phones. Darwin advances
smartphone sensing through the deployment of efficient dyibisticated machine learning tech-
nigues specifically designed to run directly on sensordegiabmartphones. Darwin introduces a
distributed and collaborative mobile computing evolve®lpeollaborate framework. By evolving
automatically from the user, a classifier can tune its peréorce on-the-go with limited human in-
tervention. Classification model pooling is a techniqueoititiced to save computational and energy
resources on the phone by pooling already available clessdih models from either surrounding
devices or from the cloud. Moreover, by pooling classifimatinodels, the inference phase can start
immediately after pooling, making the inference more resp@ since there is no need to train a
classifier from scratch. Finally, when multiple smartph®osense the same event, they can collab-
orate in the inference phase to mitigate the inference inbroduced by the sensing context and
mobility.

We finally presented VibN, a large scale mobile sensing eatitin designed to run on both
Apple mobile devices and Android platforms. Researchergwen an unprecedented opportunity
to move their research outside research laboratories bipydeg mobile sensing applications at
scale through large-scale distribution platforms sucthasApple App Store and the Google An-
droid Market. The goal of VibN is to exploit a large-scale rit@lsensing application to characterize
communities and places as never possible before, providaletime contextual information about
places not available through the current technology, cgl search. We discussed the importance
of the need for a validation methodology for inferred latmeiected from sensing applications run-
ning in the wild. We showed the results from our preliminaegign of the validation methodology
and the path toward the future development of a complete ffectige solution. Data validation is
a key step towards the large-scale adoption of mobile sgitsohnology.

The work presented in this thesis helps spearhead a newfaessearch on smartphone sensing
and opens up new challenges in mobile computing research.

5.2 End Note

The smartphone is to the 2010s as the Internet was to the He@D2000s. This is the beginning
of the smartphone era and it will be even more so in the nexadkec The migration from pure
vocal service driven cellular terminals towards more cépahd intelligent mobile devices such as

118

smartphones and tablets, has changed and acceleratedytmeeweason about mobile computing,
and consume information and data. The fast-paced smasdphariution lends itself to the idea
that in the near future people will replace their laptopshwithat | call smartops i.e., the next
generation of mobile and high-computing devices integeathe features of current smartphones
with the capabilities of modern laptops.

In this scenario, mobile sensing will play an even more damirrole and we will see the
proliferation of new sensing applications and systemsrgelacale in the areas of social networks,
green applications, global environmental monitoring,spaal and community healthcare, sensor
augmented gaming, virtual reality, and smart transpaiteatiystems.

To be front and center in pushing this vision forward, theeeseveral research threads | would
like to pursue in order to make continuous sensing on mobibaps ready for prime time. | am par-
ticularly interested in developing a complete solutiontfur data validation methodology, carrying
on along the path of bridging different sensing modalitied harvesting data from external sources
of information (e.g., GIS databases, ATUS, Foursquarep,Yeic.) to provide better confidence
levels about the nature of an inferred label coming from tid.w

We still have a long way to go if we want to turn our smartphoard smartops into virtual
companions that are able to learn our lives, propose cuseshsuggestions, and act as intelligent
personal assistants. Research is needed to conceive $guaithas that learn and adapt transpar-
ently to a user while reacting to their actions in order tovfe suggestions that facilitate produc-
tivity, change their social experience, or improve theitlyeing. | am interested in working in this
area to help lay the groundwork towards the successful riatieg of virtual companions on our
smartphones and smartops.

119

Appendix A

Refereed Publications as a Ph.D. Candidate

My refereed publications as a Ph.D. candidate are listeolhehcluding those that are currently
under review. Work in preparation and technical reportsoanéted. The published work includes
ideas that are indirectly related to the central theme afttiesis, including the MetroSense archi-
tecture, an early mobile sensing application (BikeNetharitsrange radio characterization for mo-
bile sensor networks, a calibration framework for mobilesieg systems (CaliBree), opportunistic
versus participatory mobile sensing studies, and a MACopmitfor sensor networks (Funneling-

MAC).

A.1 Journal Publications

1. Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Rdda\. Peterson, Hong Lu, Mirco
Musolesi, Shane. B. Eisenman, Xiao Zheng, and Andrew T. @athpA Mobile Sensing
Application for Sensing Presence Inference and Sharingm8ted toACM Transaction on
Sensor Networks

2. Emiliano Miluzzo, Cory T. Cornelius, Ashwin RamaswamgnZeem Choudhury, Zhigang
Liu, Andrew T. Campbell. A Distributed and Collaborativédrence Framework for Smart-
phone Sensing Support. Submittedd¥GM Transaction on Sensor Networks

3. Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbell, GeHong, and Francesca
Cuomo. A Localized, Sink-Oriented MAC for Mitigating the fneling Effect in Sensor
Networks, Submitted t€omputer Networks

4. Shane Eisenman, Emiliano Miluzzo, Nicholas Lane, RoRaltrson, Gahng Seop Ahn, and
Andrew T. Campbell. BikeNet: A Mobile Sensing System for {I3tcExperience Mapping,
ACM Transactions on Sensor Networks (TOSH). 6, n. 1, December 2009.

120

A.2

5.

A3

10.

11.

12.

Magazine Publications

Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Paehl Tanzeem Choudhury, An-
drew T. Campbell. A Survey of Mobile Phone SensinglHEE Communications Magazine
pp 140-150, September 2010.

. Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lang)i&o Miluzzo, Ronald A.

Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi, Kristodfleg and Gahng-Seop Ahn, The
Rise of People-Centric Sensing, IBEE Internet Computing: Mesh Networkingp 12-21,
Jul/Aug 2008.

Conference and Workshop Publications

. Emiliano Miluzzo, Michela Papandrea, Nicholas Lane, ¢lbn, Andrew T. Campbell. Pocket,

Bag, Hand, etc. - Automatically Detecting Phone Contexdulgh Discovery, IiProc. of First
International Workshop on Sensing for App Phones (PhorsSHD) Zurich, Switzerland,
November 2, 2010.

. Emiliano Miluzzo, Nicholas Lane, Hong Lu, Andrew T. CarefibResearch in the App Store

Era: Experiences from the CenceMe App Deployment on theri@him Proc. of The First
International Workshop Research in the Large: Using AppeStoMarkets, and other Wide
Distribution Channels in UbiComp Resear@eptember 26, 2010, Copenhagen, Denmark.

. Emiliano Miluzzo, Tianyu Wang, Andrew T. Campbell. EyeRb: Activating Mobile Phones

With Your Eyes, InProc. of The Second ACM SIGCOMM Workshop on Networkinge@gst
and Applications on Mobile Handhelds (MobiHeld'10yew Delhi, India, August 30, 2010.

Emiliano Miluzzo, Cory T. Cornelius, Ashwin Ramaswargnzeem Choudhury, Zhigang
Liu, Andrew T. Campbell. Darwin Phones: The Evolution of Sieag and Inference on Mo-
bile Phones, IProc. of Eighth International ACM Conference on Mobile 8yss, Applica-
tions, and Services (MobiSys'1@an Francisco, CA, USA, June 15-18, 2010.

Emiliano Miluzzo, James M. H. Oakley, Hong Lu, Nicholasllane, Ronald A. Peterson,
Andrew T. Campbell, Evaluating the iPhone as a Mobile Ptaiffor People-Centric Sensing
Applications”, InProc. of Intl Workshop on Urban, Community, and Social Aqgilons of
Networked Sensing Systems (UrbanSensgR&leigh, NC, USA, Nov. 4, 2008.

Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Radd A. Peterson, Hong Lu, Mirco
Musolesi, Shane. B. Eisenman, Xiao Zheng, Andrew T. Canh@®ehsing Meets Mobile So-
cial Networks: The Design, Implementation and Evaluatibthe CenceMe Application, In
Proc. of 6th ACM Conference on Embedded Networked Sensengy/6SenSys'08Raleigh,
NC, USA, Nov. 5-7, 2008.

121

13

14.

15.

16.

17.

18.

19.

20.

Andrew T. Campbell, Shane B. Eisenman, Kristof Fodéchblas D. Lane, Hong Lu, Emil-
iano Miluzzo, Mirco Musolesi, Ronald A. Peterson and Xiace&f, Transforming the So-
cial Networking Experience with Sensing Presence from MdBhones, (Demo Abstract) In
Proc. of 6th ACM Conference on Embedded Networked Sengen®y/6SenSys’08Raleigh,
NC, USA, Nov. 5-7, 2008.

Emiliano Miluzzo, Nicholas D. Lane, Andrew T. Campb&kza Olfati-Saber, CaliBree: a
Self-Calibration System for Mobile Sensor NetworksAroc. of International Conference
on Distributed Computing in Sensor Networks (DCOSS'@@intorini Island, Greece, June
11-14, 2008.

Mirco Musolesi, Emiliano Miluzzo, Nicholas D. Lane, SlesB. Eisenman, Tanzeem Choud-
hury, Andrew T. Campbell, The Second Life of a Sensor: Irgtgg Real-world Experience
in Virtual Worlds using Mobile Phones, Broc. of Fifth Workshop on Embedded Networked
Sensors (HotEmNets'08)June 2008, Charlottesville, Virginia, USA.

Andrew T. Campbell, Shane B. Eisenman, Kristof Fodachblas D. Lane, Hong Lu, Emil-
iano Miluzzo, Mirco Musolesi, Ronald A. Peterson and Xiace#f), CenceMe: Injecting
Sensing Presence into Social Network Applications usindpiMd®hones, (Demo Abstract)
In Proc. of Ninth ACM International Symposium on Mobile Ad Haawxbrking and Com-
puting (MobiHoc08) Hong Kong, May 27-30, 2008.

Andrew T. Campbell, Shane B. Eisenman, Kristof Fodéchblas D. Lane, Hong Lu, Emil-
iano Miluzzo, Mirco Musolesi, Ronald A. Peterson, Xiao Zbe@enceMe - Injecting Sens-
ing Presence into Social Networking Applications using MoPhones, (Demo abstract) In
Proc. of Ninth Workshop on Mobile Computing Systems andiégijans (HotMobile’08)
Napa Valley, CA, USA, Feb. 25-26, 2008.

Nicholas D. Lane, Shane B. Eisenman, Mirco MusolesiJiani Miluzzo, Andrew T. Camp-
bell, Urban Sensing Systems: Opportunistic or Particiy&tdn Proc. of Ninth Workshop on
Mobile Computing Systems and Applications (HotMobile’®0&pa Valley, CA, USA, Feb.
25-26, 2008.

Emiliano Miluzzo, Xiao Zheng, Kristo6f Fodor, Andrew Campbell, Radio Characterization
of 802.15.4 and its Impact on the Design of Mobile Sensor Metg; In Proc. of Fifth
European Conference on Wireless Sensor Networks (EWSNBOR)gna, Italy, Jan. 30/31 -
Feb 1, 2008.

Emiliano Miluzzo, Nicholas D. Lane, Shane B. Eisenmandrew T. Campbell, CenceMe
- Injecting Sensing Presence into Social Networking Aglans, (Invited paper) IifProc.
of Second European Conference on Smart Sensing and CdatesSSC’'07)Lake District,
UK, October 23-25, 2007.

122

21.

22.

23.

24,

25.

26.

27.

Shane B. Eisenman, Emiliano Miluzzo, Nicholas D. Larnendd A. Peterson, Gahng-Seop
Ahn, Andrew T. Campbell, The BikeNet Mobile Sensing Systam Cyclist Experience
Mapping, InProc. of Fifth ACM Conference on Embedded Networked Senster8s (Sen-
Sys’07) Sydney, Australia, Nov. 6-9, 2007.

Nicholas D. Lane, Shane B. Eisenman, Emiliano Miluzzoc®Musolesi, Andrew T. Camp-

bell, Urban Sensing: Opportunistic or Participatory?Phoc. of First Workshop Sensing on
Everyday Mobile Phones in Support of Participatory RedeaBydney, Australia, Nov. 6,

2007.

Emiliano Miluzzo, Nicholas D. Lane, and Andrew T. Camipb¥irtual Sensing Range,
(Poster Abstract), IProc. of Fourth ACM Conference on Embedded Networked S&ysor
tems (SenSys'06Boulder, Colorado, USA, Nov. 1-3, 2006.

Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbedl G8 Hong and Francesca Cuomo,
Funneling-MAC: A Localized, Sink-Oriented MAC For BoogjirFidelity in Sensor Net-
works, InProc. of Fourth ACM Conference on Embedded Networked S&ysiems (Sen-
Sys’06) Boulder, Colorado, USA, Nov. 1-3, 2006.

Shane B. Eisenman, Nicholas D. Lane, Emiliano Miluzzondtd A. Peterson, Gahng-Seop
Ahn, and Andrew T. Campbell, Metrosense Project. Peopleii€eSensing at Scale. In
Proc. of First Workshop on World-Sensor-Web (WSW'B8ulder, Colorado, USA, Oct. 31,
2006.

Gahng-Seop Ahn, Emiliano Miluzzo, Andrew T. Campbelkuénneling-MAC for High Per-
formance Data Collection in Sensor Networks, (Demo Absfran Proc. of Fourth ACM
Conference on Embedded Networked Sensor Systems (Séh3sidder, Colorado, USA,
Nov. 1-3, 2006.

Andrew T. Campbell, Shane B. Eisenman, Nicholas D. L&miliano Miluzzo, Ronald
Peterson, People-Centric Urban Sensing. (Invited PapreiProc. of Second ACM/IEEE
Annual International Wireless Internet Conference (WIC@H), Boston, USA, August 2-5,
2006.

123

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]
[10]

[11]

[12]
[13]

[14]

[15]

A.L. Barabasi. Scale-free networks: A decade and bdy8tience(325):412-413, 2009.

D. Lazer, A. Pentland, L. Adamic, S. Aral, A.L. Barab&bi Brewer, N. Christakis, N. Contractor, J.
Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, M. \alstyne. Computational social
science.Science(323):721-724, 20009.

N. Eagle and A. Pentland. Reality Mining: Sensing Com8ecial Systemsersonal and Ubiquitous
Computing 10(4):255-268, 2006.

A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, dRd\. Peterson. People-Centric Urban
Sensing. IrProc. of the 2nd International Workshop on Wireless Intérpage 18. ACM, 2006.

A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, RPeterson, H. Lu, X. Zheng, M. Musolesi,
K. Fodor, and G.S. Ahn. The Rise of People-Centric Sens$kIgE Internet Computingpages 12-21,
2008.

S.B. Eisenman. People-Centric Mobile Sensing NetworEtsD. thesisColumbia University, 2008.

J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanati&arReddy, and M.B. Srivastava. Participa-
tory Sensing. InWorld Sensor Web Workshgpages 1-5, 2006.

A. Krause, E. Horvitz, A. Kansal, and F. Zhao. Toward Coumity Sensing. IfProc. of the 7th Inter-
national Conference on Information Processing in SensdawiNks pages 481-492. IEEE Computer
Society, 2008.

T. Abdelzaher, Y. Anokwa, et al. Mobiscopes for Human &sal|EEE Pervasive Computingages
20-29, 2007.

N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhunyda\.T. Campbell. A Survey of Mobile
Phone SensingCommunications Magazine, IEE&8(9):140-150, 2010.

T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, Harrison, B. Hemingway, J. Hightower,
A. LaMarca, L. LeGrand, A. Rahimi, A. Rea, P. Klasnja, K. Kbset, J.A. Landay, J. Lester, and
D. Wyatt. The Mobile Sensing Platform: an Embedded ActiRgcognition SystemEEE Pervasive
Computing pages 32—-41, 2008.

T.E. Starner. Wearable Computing and Contextual Awass.Ph.D. thesisMIT Media Lab, 1999.

E. Miluzzo, N. Lane, S. Eisenman, and A. Campbell. Céhee- Injecting Sensing Presence into
Social Networking Applications. IRroc. of 2nd European Conference on Smart Sensing and Gpntex
pages 1-28, 2007.

E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, M. dtlesi, S.B. Eisenman, X. Zheng, and A.T.
Campbell. Sensing Meets Mobile Social Networks: the Dedigplementation and Evaluation of the
CenceMe Application. IProc. of the 6th ACM Conference on Embedded Network Senstery
(SenSys’'08pages 337-350. ACM, 2008.

E. Miluzzo, C.T. Cornelius, A. Ramaswamy, T. Choudhu£y Liu, and A.T. Campbell. Darwin
Phones: the Evolution of Sensing and Inference on MobilenBioInProc. of the 8th International
Conference on Mobile Systems, Applications, and ServidebiSys’10) pages 5-20. ACM, 2010.

124

[16] E.Miluzzo, M. Papandrea, N.D. Lane, A.M. Sarroff, So@iano, and A.T. Campbell. Tapping into the
Vibe of the City using VibN, a Continuous Sensing Applicatfor Smartphones. ldnder submission

[17] Mark Weiser. The computer for the 21st centByGMOBILE Mob. Comput. Commun. R€:3-11,
July 1999.

[18] B. Schilit, N. Adams, and R. Want. Context-Aware ConipgtApplications. InMobile Computing
Systems and Applications, 1994. WMCSA 1994. First Workshgpages 85—90. IEEE, 2008.

[19] The Context Aware Cell Phone Project. http://www.nzediit.edu/wearables/mithril/phone.html.

[20] H.W. Gellersen, A. Schmidt, and M. Beigl. Multi-Sengtontext-Awareness in Mobile Devices and
Smart Artifacts.Mobile Networks and Applicationg(5):341-351, 2002.

[21] J.E. Bardram and N. Ngrskov. A Context-Aware Patierfe§aSystem for the Operating Room. In
Proc. of the 10th International Conference on Ubiquitouspaiting pages 272-281. ACM New York,
NY, USA, 2008.

[22] R.K. Ganti, P. Jayachandran, T.F. Abdelzaher, and StAnkovic. Satire: a Software Architecture
for Smart Attire. InProc. of the 4th International Conference on Mobile Systefmplications and
Servicespages 110-123. ACM, 2006.

[23] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Neettury Challenges: Scalable Coordina-
tion in Sensor Networks. IRroc. of the 5th annual ACM/IEEE International ConferenceMobile
computing and networkingages 263—-270. ACM, 1999.

[24] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next Centuralinges: Mobile Networking for Smart Dust.
In Proc. of the 5th annual ACM/IEEE International ConferenceMobile computing and networking
pages 271-278. ACM, 1999.

[25] C.Intanagonwiwat, R. Govindan, and D. Estrin. DireldBaffusion: a Scalable and Robust Communi-
cation Paradigm for Sensor Networks.Rroc. of the 6th annual International Conference on Mobile
computing and networkingages 56—67. ACM, 2000.

[26] L. Bao and S.S. Intille. Activity Recognition from Us&mnnotated Acceleration Datd.ecture Notes
in Computer Scienc@ages 1-17, 2004.

[27] J. Lester, T. Choudhury, and G. Borriello. A Practicgpkoach to Recognizing Physical Activities.
Lecture Notes in Computer Scien8868:1-16, 2006.

[28] B. Harrison, S. Consolvo, and T. Choudhury. Using Miibdal Sensing for Human Activity Model-
ing in the Real World. IrHandbook of Ambient Intelligence and Smart Environmemtsn§er Verlag
20009.

[29] K. Lorincz, B. Chen, G.W. Challen, A.R. Chowdhury, St&aP. Bonato, and M. Welsh. Mercury:
A Wearable Sensor Network Platform for High-Fidelity Matid\nalysis. InProc. of the 7th ACM
Conference on Embedded Networked Sensor Sygpaigss 183—-196. ACM, 2009.

[30] V. Shnayder, B. Chen, K. Lorincz, T.R.F. Fulford-Jorasd M. Welsh. Sensor Networks for Medical
Care. InSenSys 05: Proc. of the 3rd International Conference on Eiokbe networked sensor systems
pages 314-314. Citeseer, 2005.

[31] F. Karray, M. Alemzadeh, J.A. Saleh, and M.N. Arab. Hum@omputer Interaction: Overview on
State of the Artinternational Journal on Smart Sensing and Intelligentt&ys 1(1):137-159, 2008.

[32] The eye mouse project. http://www.arts.ac.uk/resg@yemouse/index.htm.

[33] M. Chau and M. Betke. Real Time Eye Tracking and Blink &xion with Usb CamerasBoston
University Computer Science Technical Report No. 20052005.

[34] E. Miluzzo, T. Wang, and A.T. Campbell. EyePhone: Aating Mobile Phones with your Eyes. In
Proc. of the second ACM SIGCOMM Workshop on Networkinge8ystand Applications on Mobile
Handheldspages 15-20. ACM, 2010.

125

[35] R.Honicky, E.A. Brewer, E. Paulos, and R. White. N-SteaNetworked Suite of Mobile Atmospheric
Real-Time Sensors. IRroc. of the second ACM SIGCOMM Workshop on Networked sgsim
developing regionpages 25-30. ACM, 2008.

[36] Research in the large workshop. http://large.moitdeentre.org/.

[37] E. Cuervo, P. Gilbert, B. Wu, and L. Roy Cox. CrowdLab: Architecture for Volunteer Mobile
Testbeds. IrProc. of the 3rd International Conference on COMmunicat®ystems and NETworkS
2011.

[38] E. Miluzzo, N.D. Lane, H. Lu, and A.T. Campbell. Resdaiic the App Store Era: Experiences from
the CenceMe App Deployment on the iPhonePloc. of the 1st International Workshop Research in
the Large 2010.

[39] A. Morrison, S. Reeves, D. McMillan, and M. Chalmers. pgxiences of Mass Participation in Ubi-
comp Research. IRroc. of the 1st International Workshop Research in the £a210.

[40] H. Lu, W. Pan, N.D. Lane, T. Choudhury, and A.T. Campb&lbundSense: Scalable Sound Sensing
for People-Centric Applications on Mobile Phones.Froc. of the 7th International Conference on
Mobile systems, Applications, and Serviqesges 165-178. ACM, 2009.

[41] M. Azizyan, |. Constandache, and R. Roy Choudhury. @umdsense: Mobile Phone Localization via
Ambience Fingerprinting. IProc. of the 15th annual International Conference on MoRitemputing
and Networkingpages 261-272. ACM, 2009.

[42] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrid, Hansen, E. Howard, R. West, and
P. Boda. PEIR, the Personal Environmental Impact Repor, Rkatform for Participatory Sensing
Systems Research. Rroc. of the 7th International Conference on Mobile systelpplications, and
Servicespages 55-68. ACM, 2009.

[43] R.K. Rana, C.T. Chou, S.S. Kanhere, N. Bulusu, and W. Ear-Phone: an End-to-End Participatory
Urban Noise Mapping System. Rroc. of the 9th ACM/IEEE International Conference on Imfiation
Processing in Sensor Networksmges 105-116. ACM, 2010.

[44] Intel - urban atmospheres. http://www.urban-atmesph.net/.

[45] S. Consolvo, D.W. McDonald, T. Toscos, M.Y. Chen, J. déhlich, B. Harrison, P. Klasnja,
A. LaMarca, L. LeGrand, R. Libby, et al. Activity Sensing imet Wild: a Field Trial of Ubifit Gar-
den. InProc. of the twenty-sixth annual SIGCHI Conference on Hufaators in Computing Systems
pages 1797-1806. ACM, 2008.

[46] M.Z. Poh, K. Kim, A.D. Goessling, N.C. Swenson, and R®icard. Heartphones: Sensor Ear-
phones and Mobile Application for Non-obtrusive Health Moring. In Wearable Computers, 2009.
ISWC'09. International Symposium,grages 153-154. IEEE, 2009.

[47] Nokia Research Center. Mobile Mixed Reality The VisioNokia Research Center Insight Series
20009.

[48] P. Mohan, V.N. Padmanabhan, and R. Ramjee. Nericeth Rionitoring of Road and Traffic Condi-
tions Using Mobile Smartphones. Rroc. of the 6th ACM conference on Embedded Network Sensor
Systemspages 323-336. ACM, 2008.

[49] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. MaddenBalakrishnan, S. Toledo, and J. Eriksson.
VTrack: Accurate, Energy-Aware Road Traffic Delay EstimnatlUsing Mobile Phones. IRroc. of
the 7th ACM Conference on Embedded Networked Sensor Syptegas 85—-98. ACM, 2009.

[50] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and Mv&stava. Using Mobile Phones to
Determine Transportation Mode&CM Transactions on Sensor Networks (TOSQ):1-27, 2010.

[51] M. Musolesi, E. Miluzzo, N.D. Lane, S.B. Eisenman, T.ddkdhury, and A.T. Campbell. The Second
Life of a Sensor: Integrating Real-World Experience in ¥&itWorlds Using Mobile Phones. Proc.
of the Fifth Workshop on Embedded Networked Sensors (HotE@8) 2008.

126

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

N.M. Boers, D. Chodos, J. Huang, P. Gburzynski, I. Nékdis, and E. Stroulia. The Smart Condo:
Visualizing Independent Living Environments in a Virtuab¥\d. In Pervasive Computing Technolo-
gies for Healthcare, 2009. PervasiveHealth 2009. 3rd Iné¢ional Conference qrpages 1-8. IEEE,
20009.

J. Lifton and J.A. Paradiso. Dual Reality: Merging theaRand Virtual. IrProc. of First International
Conference on Facets of Virtual Environments (FaVE, @@)ges 12—-28, 2009.

Nokia n95. http://www.nokiausa.com/find-productespes/nokia-n95.

Y. Wang, J. Lin, M. Annavaram, Q.A. Jacobson, J. Hong,KBshnamachari, and N. Sadeh. A
Framework of Energy Efficient Mobile Sensing for Automatisdd State Recognition. Iroc. of the
7th International Conference on Mobile Systems, Applicetj and Servicepages 179-192. ACM,
20009.

M.R. Ra, J. Paek, A.B. Sharma, R. Govindan, M.H. Kriegerd M.J. Neely. Energy-Delay Trade-
offs in Smartphone Applications. IRroc. of the 8th International Conference on Mobile Systems
Applications, and Servicepages 255-270. ACM, 2010.

K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Ene#ygcuracy Trade-off for Continuous Mobile
Device Location. IrProc. of the 8th International Conference on Mobile Systefpplications, and
Servicespages 285-298. ACM, 2010.

Z. Zhuang, K.H. Kim, and J.P. Singh. Improving Energyi&éncy of Location Sensing on Smart-
phones. IrProc. of the 8th International Conference on Mobile Systelpplications, and Services
pages 315-330. ACM, 2010.

H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. Tai@pbell. The Jigsaw Continuous Sensing
Engine for Mobile Phone Applications. Proc. of the 8th ACM Conference on Embedded Networked
Sensor Systemgages 71-84. ACM, 2010.

A. Kapadia, T. Henderson, J. Fielding, and D. Kotz. Wit Walls: Protecting Digital Privacy in
Pervasive Environment®ervasive Computingages 162-179, 2007.

C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shimg &. Triandopoulos. AnonySense: Privacy-
Aware People-Centric Sensing. BRroc. of the 6th International Conference on Mobile Systefyps
plications, and Servicepages 211-224. ACM, 2008.

R.K. Ganti, N. Pham, Y.E. Tsai, and T.F. Abdelzaher. IN@mw: Stream Privacy for Grassroots
Participatory Sensing. IRroc. of the 6th ACM Conference on Embedded network SensterSy
pages 281-294. ACM, 2008.

H. Ahmadi, N. Pham, R. Ganti, T. Abdelzaher, S. Nath, dndan. Privacy-Aware Regression Mod-
eling of Participatory Sensing Data. Rroc. of the 8th ACM Conference on Embedded Networked
Sensor Systemgages 99-112. ACM, 2010.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mail, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moning on Smartphones. IRroc. of the
of OSDI 20102010.

R. DeVaul, M. Sung, J. Gips, and A.S. Pentland. MIThAD3: Applications and Architecture. In
Proc. of the 7th IEEE International Symposium on Wearablen@aters page 4. IEEE Computer
Society, 2003.

O. Vinyals and G. Friedland. Towards Semantic Analydi€onversations: a System for the Live
Identification of Speakers in Meetings. $&mantic Computing, 2008 IEEE International Conference
on, pages 426-431. IEEE, 2008.

F. Asano, K. Yamamoto, J. Ogata, M. Yamada, and M. Nakarmetection and Separation of Speech
Events in Meeting Recordings Using a Microphone ArrBYJRASIP Journal on Audio, Speech, and
Music Processing2007(2):1, 2007.

127

[68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

D. Lymberopoulos, A. Bamis, and A. Savvides. ExtragtBpatiotemporal Human Activity Patterns
in Assisted Living Using a Home Sensor Network. Rroc. of the 1st International Conference on
PErvasive Technologies Related to Assistive Environmpatges 1-8. ACM, 2008.

A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L.ngaZ. He, S. Lin, and J. Stankovic.
ALARM-NET: Wireless Sensor Networks for Assisted-LivingchResidential MonitoringUniversity
of Virginia Computer Science Department Technical Re206.

S.B. Eisenman, E. Miluzzo, N.D. Lane, R.A. Petersor.Ghn, and A.T. Campbell. BikeNet: a
Mobile Sensing System for Cyclist Experience Mappin§CM Transactions on Sensor Networks
(TOSN) 6(1):1-39, 2009.

D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, Nofdveji, K. Reiger, J. Shaffer, and F.L.
Wong. Sensay: a Context-Aware Mobile Phone Wearable Computers, 2003. Proc. Seventh IEEE
International Symposium opages 248-249. IEEE, 2003.

M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. @owPhone: a Prototyping Platform for
Context-Aware Mobile ApplicationdEEE Pervasive Computingages 51-59, 2005.

Nokia - sensorplanet. http://www.sensorplanet.org/

E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, So&arR. Chandra, and P. Bahl. MAUI:
Making Smartphones Last Longer with Code OffloadPmc. of the 8th International Conference on
Mobile Systems, Applications, and Servjgesges 49—-62. ACM, 2010.

B. Logan, J. Healey, M. Philipose, E.M. Tapia, and Silllmt A Long-Term Evaluation of Sens-
ing Modalities for Activity Recognition. IrProc. of the 9th International Conference on Ubiquitous
Computing pages 483-500. Springer-Verlag, 2007.

J. Lester, T. Choudhury, G. Borriello, S. Consolvo, dntay, K. Everitt, and I. Smith. Sensing and
Modeling Activities to Support Physical Fitness. Pnoc. of Ubicomp Workshop: Monitoring, Mea-
suring, and Motivating Exercise: Ubiquitous Computing tggort Fitness), Tokyo, Japag@iteseer,
2005.

G. Borriello, W. Brunette, J. Lester, P. Powledge, andR&a. An Ecosystem of Platforms to Support
Sensors for Personal Fitness. 2006.

B.L. Harrison, S. Consolvo, and T. Choudhury. Using ¥MModal Sensing for Human Activity
Modeling in the Real WorldHandbook of Ambient Intelligence and Smart Environmerages 463—
478, 2010.

N. Lane, H. Lu, S. Eisenman, and A. Campbell. Coopeealigchniques Supporting Sensor-Based
People-Centric InferencindPervasive Computingpages 75-92, 2008.

E. Miluzzo, M. Papandrea, N.D. Lane, H. Lu, and A.T. Cdrlh Pocket, Bag, Hand, etc.- Automat-
ically Detecting Phone Context through Discovery. Aroc. of the First International Workshop on
Sensing for App Phones (PhoneSensg20)0.

A. Kapadia, D. Kotz, and N. Triandopoulos. OpportuitiSensing: Security Challenges for the new
Paradigm. InCommunication Systems and Networks and Workshops, 2004SGIGTS’'09. First
International pages 1-10. IEEE, 2009.

K.L. Huang, S.S. Kanhere, and W. Hu. Preserving Priva@articipatory Sensing SystenGomputer
Communications33(11):1266-1280, 2010.

M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and Aa@pbell. Supporting Energy-Efficient
Uploading Strategies for Continuous Sensing Applicatiom$/obile PhonesPervasive Computing
pages 355-372, 2010.

Y. Wang, B. Krishnamachari, Q. Zhao, and M. Annavaranarkbv-Optimal Sensing Policy for User
State Estimation in Mobile Devices. IRAroc. of the 9th ACM/IEEE International Conference on
Information Processing in Sensor Netwagrgages 268-278. ACM, 2010.

128

[85]

[86]

[87]

[88]

[89]

[90]

[91]
[92]
[93]

[94]

[95]
[96]
[97]

[98]
[99]

[100]

[101]
[102]
[103]
[104]
[105]

K.K. Rachuri, M. Musolesi, C. Mascolo, P.J. Rentfrowl@ngworth, and A. Aucinas. EmotionSense:
a Mobile Phones Based Adaptive Platform for Experimentai&@dsychology Research. Rroc. of
the 12th ACM International Conference on Ubiquitous Cormg,{pages 281-290. ACM, 2010.

J.E. Larsen and K. Jensen. Mobile Context Toolbox: ateisible Context Framework for s60 Mobile
Phones. InProc. of the 4th European Conference on Smart Sensing antegippages 193—206.
Springer-Verlag, 2009.

J. Rana, J. Kristiansson, J. Hallberg, and K. SynnesAfamitecture for Mobile Social Networking
Applications. In2009 First International Conference on Computational liigence, Communication
Systems and Networksages 241-246. IEEE, 2009.

T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. CornerCrowd: a platform for mobile crowd-
sourcing. InProc. of the 7th ACM Conference on Embedded Networked S&ystemspages 347—
348. ACM, 2009.

A. Laurucci, S. Melzi, and M. Cesana. A Reconfigurabledteware for Dynamic Management
of Heterogeneous Applications in Multi-Gateway Mobile SenNetworks. InSensor, Mesh and
Ad Hoc Communications and Networks Workshops, 2009. SEC@kslbps’'09. 6th Annual IEEE
Communications Society Conference pages 1-3. IEEE.

H. Wang and A. Chin. Evolution Analysis of a Mobile Sddietwork. Advanced Data Mining and
Applications pages 310-321, 2010.

Android. http://www.android.com.
iOS Dev Center. http://developer.apple.com/devedius/index.action.

A.T. Campbell, S.B. Eisenman, K. Fodor, N.D. Lane, H, EuMiluzzo, M. Musolesi, R.A. Peterson,
and X. Zheng. Transforming the Social Networking Experéeenith Sensing Presence from Mobile
Phones. IrProc. of the 6th ACM Conference on Embedded Network SensterSypages 367—368.

ACM, 2008.

E.M. Tapia, S.S. Intille, W. Haskell, K. Larson, J. Whig A. King, and R. Friedman. Real-Time
Recognition of Physical Activities and their Intensitiesikly Wireless Accelerometers and a Heart
Rate Monitor. 2007.

R.O. Duda, P.E. Hart, and D.G. StoRattern Classificationvolume 2. 2001.
Weka. http://www.cs.waikato.ac.nz/ml/weka/.

D. Patterson, L. Liao, D. Fox, and H. Kautz. InferringgHiLevel Behavior from Low-Level Sensors.
In UbiComp 2003: Ubiquitous Computingages 73—89. Springer, 2003.

Wikimapia. http://www.wikimapia.org.

D. Ashbrook and T. Starner. Using GPS to Learn Signifitartations and Predict Movement Across
Multiple Users.Personal and Ubiquitous Computing(5):275-286, 2003.

C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and érvEen. Discovering Personally Meaning-
ful Places: An Interactive Clustering ApproacACM Transactions on Information Systems (TQIS)
25(3):12—es, 2007.

Cenceme web site. http://www.cenceme.org.

Sqlite. http://www.sqlite.org.

Skyhook Wireless. http://lwww.skyhookwireless.dom
Kiss FFT Library. http://sourceforge.net/projektssfft.

E. Oliver. The Challenges in Large-Scale Smartphoser\$tudies. IProc. of the 2nd ACM Interna-
tional Workshop on Hot Topics in Planet-scale Measureneages 1-5. ACM, 2010.

129

[106] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,Gdvindan, and D. Estrin. Diversity in
Smartphone Usage. Proc. of the 8th International Conference on Mobile systepplications, and
Servicespages 179-194. ACM, 2010.

[107] N. Liand G. Chen. Analysis of a Location-Based Sociatwbrk. In2009 International Conference
on Computational Science and Engineeripgges 263-270. IEEE, 2009.

[108] LIBSVM. http://www.csie.ntu.edu.tw/ cjlin/libsvm
[109] Amazon Web Services (AWS). http://aws.amazon.com.
[110] CenceMe Discussion Board. http://getsatisfactiom/cenceme.

[111] A. Kansal, M. Goraczko, and F. Zhao. Building a Sensetvirk of Mobile Phones. IRroc. of the
6th International Conference on Information Processingansor Networkages 547-548. ACM,
2007.

[112] S. Gaonkar, J. Li, R.R. Choudhury, L. Cox, and A. Schmiicro-Blog: Sharing and Querying
Content Through Mobile Phones and Social Participatiofrat. of the 6th International Conference
on Mobile Systems, Applications, and Servjipegies 174-186. ACM, 2008.

[113] Second life. http://www.secondlife.com.

[114] N. Eagle and A.S. Pentland. Eigenbehaviors: IdemtifyStructure in RoutineBehavioral Ecology
and Sociobiology63(7):1057-1066, 2009.

[115] Y. Nakanishi, K. Takahashi, T. Tsuji, and K. HakozakKiIAMS: A Mobile Communication Tool Using
Location and Schedule InformatioRervasive Computingpages 119-136, 2002.

[116] N. Marmasse, C. Schmandt, and D. Spectre. WatchMe: amtation and Awareness Between
Members of a Closely-Knit GroupJbiComp 2004: Ubiquitous Computingages 214-231, 2004.

[117] Twitter. http://www.twitter.com.

[118] E. Welbourne, J. Lester, A. LaMarca, and G. Borrielldobile Context Inference Using Low-Cost
SensorsLocation-and Context-Awarenegmges 254-263, 2005.

[119] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, ggen, L. Benini, and G. Tr
"oster. Activity Recognition from On-Body Sensors: AccoyaPower Trade-Off by Dynamic Sensor
Selection.Wireless Sensor Networksages 17-33, 2008.

[120] J. Paradiso, K.Y. Hsiao, and E. Hu. Interactive Musiclhstrumented Dancing Shoes.Rroc. of the
1999 International Computer Music Conferenpages 453-456. Citeseer, 1999.

[121] D. McMillan, A. Morrison, O. Brown, M. Hall, and M. Chalers. Further Into the Wild: Running
Worldwide Trials of Mobile Systemservasive Computingpages 210-227, 2010.

[122] S. Zhai, P.O. Kristensson, P. Gong, M. Greiner, S.Ag¢.M. Liu, and A. Dunnigan. Shapewriter
on the iPhone: from the Laboratory to the Real WorldPhoc. of the 27th International Conference
extended abstracts on Human factors in Computing Sysgages 2667—-2670. ACM, 2009.

[123] T. Henderson and F.B. Abdesslem. Scaling MeasureBgueriments to Planet-Scale: Ethical, Reg-
ulatory and Cultural Considerations. Hroc. of the 1st ACM International Workshop on Hot Topics
of Planet-Scale Mobility Measuremenpage 6. ACM, 2009.

[124] R. Honicky, E.A. Brewer, J.F. Canny, and R.C. Cohercréasing the Precision of Mobile Sensing
Systems Through SupersamplingrbanSenseQgage 31, 2008.

[125] X. Zhu. Semi-Supervised Learning Literature Surv€omputer Science, University of Wisconsin-
Madison 2007.

[126] Nokia Series. http://europe.nokia.com/nseries.

[127] E. Shribergand A. Stolcke. The Case for Automatic tdighevel Features in Forensic Speaker Recog-
nition. In Ninth Annual Conference of the International Speech Coniration Association2008.

130

[128] E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkatarapsamd A. Stolcke. Modeling Prosodic Feature
Sequences for Speaker Recogniti&peech Communicatipf6(3-4):455-472, 2005.

[129] I. Lapidot, H. Guterman, and A. Cohen. Unsuperviseddker Recognition Based on Competition
Between Self-Organizing Mapsleural Networks, IEEE Transactions,dt8(4):877-887, 2002.

[130] G. Friedland and O. Vinyals. Live Speaker Identifioatin Conversations. IRroc. of the 16th ACM
International Conference on Multimedipages 1017-1018. ACM, 2008.

[131] S. Zhang, S. Zhang, and B. Xu. A Robust Unsupervise@SgeClustering of Speech Utterances. In
Natural Language Processing and Knowledge Engineerin@52(EEE NLP-KE'05. Proc. of 2005
IEEE International Conference gpages 115-120. IEEE.

[132] Nokia N90O0. http://maemo.nokia.com/n900/.

[133] S. Basu. A Linked-HMM Model for Robust Voicing and SpbleDetection. InAcoustics, Speech,
and Signal Processing, 2003. Proc..(ICASSP’03). 2003 |EfE&rnational Conference gwolume 1,
pages |1-816. IEEE, 2003.

[134] F. Zheng, G. Zhang, and Z. Song. Comparison of Diffeterplementations of MFCCJournal of
Computer Science and Technolo$(6):582-589, 2001.

[135] H. Ezzaidi and J. Rouat. Pitch and MFCC Dependent GMMI&ie for Speaker Identification Sys-
tems. InElectrical and Computer Engineering, 2004. Canadian Cafee on volume 1, pages
43-46. |IEEE, 2004.

[136] E. Shriberg. Higher-Level Features in Speaker Reitimgn Speaker Classification pages 241-259,
2007.

[137] D.A. Reynolds and R.C. Rose. Robust Text-Indepen8patker Identification Using Gaussian Mix-
ture Speaker ModelsSpeech and Audio Processing, IEEE Transactiong¢h):72—-83, 1995.

[138] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speakerification Using Adapted Gaussian Mixture
Models. Digital signal processing10(1-3):19-41, 2000.

[139] C. Tadj, P. Dumouchel, and P. Ouellet. GMM Based Spebdentification Using Training-Time-
Dependent Number of Mixtures. coustics, Speech and Signal Processing, 1998. Proc. d8@
IEEE International Conference gmolume 2, pages 761-764. IEEE, 1998.

[140] T. Kinnunen, T. Kilpelainen, and P. Franti. Coman of Clustering Algorithms in Speaker Identi-
fication. InProc. of the IASTED International Conference Signal Pregeg and Communications
pages 222-227,2000.

[141] D.H. Kim, J. Hightower, R. Govindan, and D. Estrin. Bawering Semantically Meaningful Places
from Pervasive RF-Beacons. Broc. of the 11th International Conference on Ubiquitousrpaiting
pages 21-30. ACM, 2009.

[142] Rastamat. http://labrosa.ee.columbia.edu/méatiatamat.
[143] QT. http://gt.nokia.com/.
[144] FFTW. http://lwww.fftw.org.

[145] M. Zhu. Recall, Precision and Average Precisidepartment of Statistics and Actuarial Science,
University of Waterloo, Waterlg@004.

[146] Nokia Research Center. Sensing the World with Mob#iDes.Technical Report2008.

[147] E. Miluzzo, N. Lane, A. Campbell, and R. Olfati-Sab@alibree: A self-calibration system for mobile
sensor networkDistributed Computing in Sensor Systemages 314-331, 2008.

[148] R. Kumar, M. Wolenetz, B. Agarwalla, J.S. Shin, P. ldu#. Paul, and U. Ramachandran. DFuse: a
Framework For Distributed Data Fusion. Proc. of the 1st International Conference on Embedded
Networked Sensor Systemages 114-125. ACM, 2003.

131

[149] S. Patil, S.R. Das, and A. Nasipuri. Serial Data Fusising Space-Filling Curves in Wireless Sensor
Networks. InSensor and Ad Hoc Communications and Networks, 2004. IEEFEOSED4. 2004 First
Annual IEEE Communications Society Conferencgpaiges 182—-190. IEEE, 2004.

[150] L. Xiao, S. Boyd, and S. Lall. A Scheme for Robust Distited Sensor Fusion Based on Average
Consensus. Iimformation Processing in Sensor Networks, 2005. IPSNFO&rth International Sym-
posium onpages 63—70. IEEE, 2005.

[151] J. Zhao, R. Govindan, and D. Estrin. Computing Aggtegdor Monitoring Wireless Sensor Net-
works. InSensor Network Protocols and Applications, 2003. ProchefFirst IEEE. 2003 IEEE
International Workshop grpages 139-148. IEEE, 2003.

[152] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Sv&dians and Beyond: new Aggregation Tech-
niques for Sensor Networks. Proc. of the 2nd International Conference on Embedded Né&gab
Sensor Systemgages 239-249. ACM, 2004.

[153] S. Nath, P.B. Gibbons, S. Seshan, and Z.R. Andersomofys Diffusion for Robust Aggregation
in Sensor Networks. IProc. of the 2nd International Conference on Embedded Né&&dbSensor
Systemspages 250-262. ACM, 2004.

[154] R. Olfati-Saber. Distributed Kalman Filter with Endited Consensus Filters. Drecision and Control,
2005 and 2005 European Control Conference. CDC-ECC’0%h fBEE Conference qipages 8179—
8184. IEEE, 2005.

[155] R. Olfati-Saber. Distributed Kalman Filtering andnSer Fusion in Sensor Networks$\etworked
Embedded Sensing and Contpages 157-167, 2006.

[156] The CASA Project. http://www.casa.umass.edu.
[157] S.B. Eisenman. People-Centric Mobile Sensing NeltadPh.D. DissertationOctober 2008.

[158] D. Yarowsky. Unsupervised Word Sense DisambiguaRomling Supervised Methods. Rroc. of
the 33rd annual meeting on Association for Computationablistics pages 189-196. Association
for Computational Linguistics, 1995.

[159] E. Riloff, J. Wiebe, and T. Wilson. Learning SubjeetNouns Using Extraction Pattern Bootstrapping.
In Proc. of the seventh conference on Natural language legrattHLT-NAACL 2003-Volume pages
25-32. Association for Computational Linguistics, 2003.

[160] B. Maeireizo, D. Litman, and R. Hwa. Co-Training foreldicting Emotions with Spoken Dialogue
Data. InProc. of the ACL 2004 on Interactive poster and demonstredgssiongpages 28—es. Asso-
ciation for Computational Linguistics, 2004.

[161] M. Weiser. Some Computer Science Issues in Ubiqui@arsputing. Communications of the ACM
36(7):75-84,1993.

[162] B. Schilit, N. Adams, and R. Want. Context-Aware Coripg Applications. InWMCSA pages
85-90. IEEE Computer Society, 2004.

[163] P. Dourish. What We Talk About When We Talk About Conté3ersonal and ubiquitous computing
8(1):19-30, 2004.

[164] J. Lukkari, J. Korhonen, and T. Ojala. SmartRestatifdiobile Payments in Context-Aware Environ-
ment. InProc. of the 6th International Conference on Electronic @oance pages 575-582. ACM,
2004.

[165] J. Parkka, M. Ermes, K. Antila, M. van Gils, A. Manttaand H. Nieminen. Estimating Intensity of
Physical Activity: a Comparison of Wearable Accelerometed Gyro Sensors and 3 Sensor Loca-
tions. InEngineering in Medicine and Biology Society, 2007. EMBS72@9th Annual International
Conference of the IEEBages 1511-1514. IEEE, 2007.

[166] Q. Li, J.A. Stankovic, M.A. Hanson, A.T. Barth, J. La@nd G. Zhou. Accurate, Fast Fall Detection
Using Gyroscopes and Accelerometer-Derived Posture rimdiion. 2009 Body Sensor Networks
pages 138-143, 2009.

132

[167] S.W. Lee and K. Mase. Activity and Location Recognitldsing Wearable SensorBervasive Com-
puting, IEEE 1(3):24-32, 2002.

[168] Y. Kawahara, H. Kurasawa, and H. Morikawa. Recogmjzilser Context Using Mobile Handset with
Acceleration Sensors. IRortable Information Devices, 2007. PORTABLE’07. IEEEetnational
Conference oypages 1-5. IEEE, 2007.

[169] Smartphone race heats up. http://bits.blogs.nyiowmn/2010/12/02/the-u-s-smartphone-race-
grows/?ref=technology.

[170] Citysense. http://www.citysense.com/.

[171] T.Horanontand R. Shibasaki. An Implementation of M®Bensing for Large-Scale Urban Monitor-
ing. InProc. of Urbansense’Q2008.

[172] N.D. Lane, D. Lymberopoulos, F. Zhao, and A.T. Campbélapori: Context-based Local Search
for Mobile Phones using Community Behavioral Modeling amdifarity. In Proc. of the 12th ACM
International Conference on Ubiquitous Computipgges 109-118. ACM, 2010.

[173] Wertago. http://wertago.com/index.html.
[174] Vibn web site. http://sensorlab.cs.dartmouth.eibun.
[175] Dbscan. http://en.wikipedia.org/wiki/DBSCAN.

[176] A. Subramanya, A. Raj, J. Bilmes, and D. Fox. Recogujzctivities and Spatial Context Using
Wearable Sensors. Proc. of the Conference on Uncertainty in Artificial Intgtince Citeseer, 2006.

[177] L. Von Ahn. Games with a Purpos€omputey 39(6):92—-94, 2006.
[178] Atus. http://www.bls.gov/tus.

[179] D. Wyatt, M. Philipose, and T. Choudhury. Unsuperdigetivity Recognition Using Automatically
Mined Common Sense. IRroc. of the National Conference on Atrtificial Intelligens®mlume 20,
page 21. Menlo Park, CA; Cambridge, MA; London; AAAI PresdiTNPress; 1999, 2005.

[180] J.B. Lovins and MASSACHUSETTS INST OF TECH CAMBRIDGH.ECTRONIC SYSTEMS
LAB. Development of a Stemming Algorithil T Information Processing Group, Electronic Systems
Laboratory, 1968.

[181] T. Das, P. Mohan, V.N. Padmanabhan, R. Ramjee, and#&n$h PRISM: Platform for Remote Sens-
ing Using Smartphones. Proc. of the 8th International Conference on Mobile Systekpglications,
and Servicegpages 63—-76. ACM, 2010.

[182] X. Bao and R. Roy Choudhury. MoVi: Mobile Phone Basedéd Highlights via Collaborative
Sensing. IrProc. of the 8th International Conference on Mobile Systefpplications, and Services
pages 357-370. ACM, 2010.

[183] G.R. Yavuz, M.E. Kocak, G. Ergun, H. Alemdar, H. Yalc®@.D. Incel, L. Akarun, and C. Ersoy. A
Smartphone Based Fall Detector with Online Location SupponProc. of PhoneSense’12010.

[184] A. Madan, M. Cebrian, D. Lazer, and A. Pentland. So8ehsing for Epidemiological Behavior
Change. IrProc. of the 12th ACM International Conference on Ubiqugdomputingpages 291—
300. ACM, 2010.

[185] D.H. Kim, Y. Kim, D. Estrin, and M.B. Srivastava. Sermt: Sensing Everyday Places and Paths
Using Less Energy. IiProc. of the 8th ACM Conference on Embedded Networked S&ystems
pages 43-56. ACM, 2010.

[186] R.K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T.F. Akdber. GreenGPS: A Participatory Sensing
Fuel-Efficient Maps Application. IfProc. of the 8th International Conference on Mobile Systems
Applications, and Servicepages 151-164. ACM, 2010.

[187] Foursquare web site. http://foursquare.com.

133

[188] Tweetmic web site. http://tweetmic.com.

[189] M. Rohs, S. Kratz, R. Schleicher, A. Sahami, and A. ScdtmWWorldCupinion: Experiences with an
Android App for Real-Time Opinion Sharing during World Cupcser Games. IRroc. of Research
In The Large Wokshop’1@010.

134

