
Bubble-Sensing: A New Paradigm for Binding a Sensing Task
to the Physical World using Mobile Phones

Hong Lu∗ Nicholas D. Lane∗ Shane B. Eisenman† Andrew T. Campbell∗

∗Dartmouth College †Columbia University
Hanover, New Hampshire, USA New York, New York, USA

{hong,niclane,campbell}@dartmouth.edu shane@ee.columbia.edu

Abstract—We propose Bubble-Sensing, a new sensor network
abstraction that allows mobile phones users to create a binding
between tasks (e.g., take a photo, or sample audio every hour
indefinitely) and the physical world at locations of interest, that
remains active for a duration set by the user. We envision
mobile phones being able to affix task bubbles at places of
interest and then receive sensed data as it becomes available in a
delay-tolerant fashion, in essence, creating a living documentary
of places of interest in the physical world. The system relies
on other mobile phones that opportunistically pass through
bubble-sensing locations to acquire tasks and do the sensing
on behalf of the initiator, and deliver the data to the bubble-
sensing server for retrieval by the user that initiated the task.
We describe an implementation of the bubble-sensing system
using sensor-enabled mobile phones, specifically, Nokia’sN80
and N95 (with GPS, accelerometers, microphone, camera). Task
bubbles are maintained at locations through the interaction of
“bubble carriers”, which carry the sensing task into the area of
interest, and “bubble anchors”, which maintain the task bubble
in the area when the bubble carrier is no longer present. In our
implementation, bubble carriers and bubble anchors implement
a number of simple mobile-phone based protocols that refresh
the task bubble state as new mobile phones move through the
area. Phones communicate using the local ad hoc 802.11g radio to
transfer task state and maintain the task in the region of interest.
This task bubble state is ephemeral and times out when no bubble
carriers or bubble anchors are in the area. Our design is resilient
to periods when no mobiles pass through the bubble-area and is
capable of “reloading” the task into the bubble region. In this
paper, we describe the bubble-sensing system and a simple proof
of concept experiment.

I. I NTRODUCTION

The mobile phone has become a ubiquitous tool for commu-
nications, computing, and increasingly, sensing. Many mobile
phone and PDA models (e.g., Nokia’s N95 and 5500 Sport,
Apple’s iPhone and iPod Touch, and Sony Ericsson’s W580
and W910) commercially released over the past couple years
have integrated sensors (e.g., accelerometer, camera, micro-
phone) that can be accessed programmatically, or support
access to external sensor modules connected via Bluetooth.
The sensed data gathered from these devices form the basis of
a number of new architectures and applications [3] [2] [1] [7]
[6]. We present the Bubble-Sensing system, that acts to support
the persistent sensing of a particular location, as required by
user requests. Conceptually, a user with a phone that has opted
into the Bubble-Sensing system visits a location of interest,
presses a button on his phone to affix the sensing request to

the location, and then walks away. The sensing request persists
at the location until the timeout set by the initiator is reached.
This mechanism can be viewed as an application in its own
right (e.g., a user slogging [4] his life), and as a persistent
sensing building block for other applications.

While the notion of virtually affixing sensor tasks to lo-
cations is appealing, it requires some work to implement
this service on top of a cloud of human-carried phone-based
sensors. First, since the mobility of the phones is uncontrolled -
there is no guarantee that sensors will be well-placed to sample
the desired location specified by the sensing task. Further,there
is the issue of communicating the sensing task to potential sen-
sors when they are well-positioned. This is made more difficult
when, either due to hardware or user policy limitations, an
always-on cellular link and localization capabilities arenot
available on all phones. For example, wireless data access
via EDGE, 3G, or open WiFi infrastructure is increasingly
available, as is the location service via on-board GPS, WiFi,
or cellular tower triangulation. However, for example, only a
subset of mobile phones on the market have GPS and WiFi,
and even when devices have all the required capabilities, users
may disable the GPS and or limit data upload via WiFi and
cellular data channels to manage privacy, energy consumption,
and monetary cost.

Though the mobility in a people-centric sensor network is
not controllable, it is also not random. In an urban sensing
scenario, the visited areas of interest for one person are likely
to be visited by many others (e.g., street corners, bus/subway
stations, schools, restaurants, night clubs, etc.). We imagine
a heterogeneous system where users are willing to share
resources and data and to fulfill sensing tasks. Therefore,
the bubble-sensing system opportunistically leverages other
mobile phones as they pass by on behalf of a sensing task
initiator. We adopt a two tier hardware architecture compris-
ing the bubble server on the back end; and sensor-enabled
mobile phones that can initiate sensing bubbles, maintain
sensing bubbles in the designated location, replace bubbles
that disappear due to phone mobility, enact the sampling as
indicated by the sensing bubble, and report the sensed data
back to the bubble server. Mobile phones participating in the
bubble-sensing system take on one or more roles depending
on their mobility characteristic, hardware capabilities,and user
profiles. Thebubble creatoris the device whose user initiates



the sensing request that leads to the creation of the sensing
bubble. Thebubble anchorkeeps the bubble in the region
of interest by broadcasting the sensing request. Thesensing
nodeperceives the bubble by listening to the broadcasts, takes
samples within the area of interest according sensing request,
and then uploads the results to the bubble server. The bubble
carrier can help to restore a bubble if all bubble anchors are
lost. The bubble server binds the results to the bubble, which
can be queried by the bubble creator at any time.

We have implemented the bubble-sensing system using
Nokia N95 mobile phones. In Section II, we describe the
specific responsibilities of the virtual roles mentioned above
and provide details on the communication protocols required
to implement these roles. Sections III and IV describes
our current implementation and a preliminary evaluation of
bubble-sensing using a N95 testbed, reporting on temporal
sensing coverage, and on a measure of sensed data quality.
We discuss related work from the pervasive and mobile ad hoc
networking communities, including comparisons to alternative
implementation choices, in Section V. In Section VI, we
discuss possibilities for extending the current work and offer
concluding remarks.

II. BUBBLE-SENSING

Sensing tasks are created and maintained in the bubble-
sensing system through the interaction of a number of virtual
roles, where a given physical node can take on one or more
virtual role based on its location, device capabilities (e.g.,
communication mode, sensor), user configuration (when and
to what extent resources should be shared for the common
good), device state (e.g., an ongoing phone call may preclude
taking an audio sample for another application), and device
environment (e.g., a picture taken inside the pocket may not
be meaningful to the data consumer). In the bubble-sensing
system, a task is a tuple(action, region, duration) The
action can be any kind of sensing operation such as “take a
photo”, or “record a sound/video clip”. Theregion is defined
as the tuple(location, radius), where location is a point
in a coordinate system like GPS indicating the center of
the region, and theradius defines the area of the region.
We call this region of interest the “sensing bubble”. In the
following, we describe each of the virtual roles (i.e., bubble
creator, bubble anchor, sensing node, and bubble carrier) in
the context of the major system operations: bubble creation,
bubble maintenance, bubble restoration. Figure 1 gives a
pictorial representation of the Bubble-Sensing architecture and
the main bubble management steps.

A. Bubble Creation

The bubble creator is the device whose user initiates the
sensing request that leads to the creation of the sensing bubble.
Generally speaking, there are two ways a bubble can be
created. In the first scenario, the creator is a mobile phone.The
phone’s carrier moves to the location of interest and creates
the sensing task. In the second scenario, the creator is any
entity that registers a task with the bubble server, but does

interact with other nodes at the location of interest in support
of the sensing. As the process flow for the second case is a
subset of the first (c.f. bubble restoration in Section II-D), in
the following we omit any further explicit discussion of the
second scenario.

Proceeding with a discussion of the first scenario, we
assume the bubble creator is a mobile device at the location of
interest with a short range radio for local peer interactions. The
creator (e.g., nodeA in Figure 1) broadcasts the sensing task
using its short range radio. If the user has enabled cellular
data access to the backend bubble server, the creator also
registers the task with the bubble server. If the creator has
localization capability, it populates theregion field of the task
definition, and the sensing bubble is created with its center
at this location. Otherwise, theregion field of the task is
left blank in the broadcast, and the sensing bubble is created
with its center at the current location of the creator where
the area of the bubble is determined by its radio transmission
range. Note, that if the creator is not able to obtain a location
estimate and register its task with the bubble server, it will
not be possible to restore the bubble later (c.f. Section II-D)
in case the bubble disappears due to temporary lack of suitable
mobile nodes in the area of interest. Nodes that receive the task
broadcast and meet the hardware and context requirements for
the sensing task can then sense in support of the task, and
will later upload the sensed data to the bubble server in either
a delay-tolerant (e.g., opportunistic rendezvous with an open
WiFi access point), or real-time (e.g., the cellular data channel)
manner.

B. Bubble Maintenance

Given the uncontrolled mobility of the creator, it may
happen that the creator leaves the bubble location while the
bubble task is still active (as specified in theduration field
of the task). If this happens, it is no longer appropriate forthe
creator to broadcast the task since recipients of this broadcast
will not be in the target bubble location. A way to anchor the
bubble to the location of interest is needed; the bubble anchor
role fills this requirement (e.g., nodeB in Figure 1). The node
that takes on this role should be relatively stationary at the
target location of the task. We propose two variants for bubble
anchor selection, one that requires localization capability on
all nodes (e.g., GPS), and one that uses inference from an
accelerometer for mobility detection.

1) Location-based: In the location-based approach, all
nodes that find themselves in the sensing bubble with knowl-
edge of the bubble task (i.e., they can hear the bubble task
broadcasts) are potential anchor candidates. If the candidate
does not hear another anchor (as indicated by a special
field populated in the bubble task broadcast) for a particular
threshold time, indicating the bubble is not currently covered
by an anchor, it prepares to become the anchor for that bubble.
Each candidate anchor backs off a time proportional to its
mobility as measured by speed inferred from changes in the
location fixes. After this backoff time, a candidate that does
not overhear any other anchor broadcasting the task then



Fig. 1. Bubble-Sensing architecture and bubble management. PhoneA is
the task creator.A is moved by its human carrier to the area of interest, and
attempts to attach the sensing bubble to the area by broadcasting the sensing
task via its local radio, and also registers the task with thebubble server via
its cellular radio. Stationary phoneB receives the task broadcasts fromA and
assumes the role of bubble anchor. As the mobility ofA takes it out of the
bubble area (indicated by the dashed circle),B takes over the management of
the sensing task by continuing to broadcast the sensing taskto passersby. If
the anchorB later moves away, the bubble temporarily disappears. A phone
C that later moves through the area of interest is signaled by the bubble
server, becomes a bubble carrier, and tries to re-affix the sensing bubble by
broadcasting the task via its local radio. Sensed data gathered by phones that
accept the sensing task broadcasted by the bubble creator, bubble anchor, or
bubble carrier can be uploaded in real time via the cellular network, or in a
delay tolerant fashion via a local radio gateway (e.g., WiFi).

assumes the role of bubble anchor. The anchor will continue
to broadcast the task beacon (with the special field to indicate
an anchor is sending it) until it moves out of the location of
interest for that bubble.

2) Mobility-based:In the mobility-based approach, like the
location-based approach, nodes that can hear the bubble task
broadcasts are potential anchor candidates. If the candidate
does not hear another anchor broadcasting the bubble task,
it backs off a time proportional to its mobility, as inferred
from data collected by its accelerometer. After this backoff
time, a candidate that does not overhear any other anchor
broadcasting the task then assumes the role of bubble anchor.
The anchor will continue to broadcast the task beacon (with
the special field to indicate an anchor is sending it) until it
moves out of the location of interest for that bubble. In this
case, the mobility is again determined through classification
of data from the on-board accelerometer.

C. Challenges to Bubble Maintenance

The broadcast-based approach to bubble maintenance in-
troduces two main sources of error to the data collected in
support of the sensing task. First, since we do not require
sensing nodes to have knowledge of their absolute location,
recipients of the task broadcast that are outside of the bubble
area defined in the broadcast may still collect and upload
data to the bubble server. This potentially makes the effective
bubble size larger than the specified bubble size. The extent
of this distortion depends both on the radio range of the task
broadcast, and the location of the broadcaster (i.e., bubble
creator, bubble anchor, and bubble carrier - c.f. Section II-D)
with respect to the specified bubble center location. If location-
based bubble maintenance is used, or if the sensing node has

localization capabilities, the location information may be used
to compensate the transmission power of the task broadcast or
suppress sensing when nodes are outside of the defined bubble
area to reduce this bubble distortion.

The second source of error is bubble drift, which can
happen for two reasons. First, drift can happen over time if
the anchor moves but continues to broadcast the bubble task
due to inaccuracy in its mobility/location-detection methods.
While improvements in localization technology and mobil-
ity classification can help here, we also explicitly limit the
consecutive amount of time a node can act as the anchor
for a given bubble. Assuming a probabilistic mobility/location
error model, it would be possible to calculate the appropriate
timeout to probabilistically limit the bubble drift below a
desired level. The second cause of bubble drift is limited tothe
mobility-based bubble maintenance method where ubiquitous
localization not assumed. In this case, as the current anchor
gives up its role (e.g., out of battery, or anchor role timeout,
move out of the bubble region), one of other semi-stationary
or slow moving nodes available in the bubble will take over
the anchor role as mentioned in Section II-B. This can be
viewed as a passive role handoff. However, with each handoff
the center of the bubble drifts to the location of the new
anchor and over time this can markedly distort the sensing
coverage of the bubble. To counteract this source of drift, we
implement a limit on the number of anchor handoffs. After the
handoff limit is reached, the anchor must be reinitialized by the
bubble restoration process described in the following. We note
that if mobile devices have continuous localization capability
(e.g., using GPS, GPS assisted with GSM [14], WiFi [15]),
then bubble distortion and drift is limited by the localization
inaccuracy.

D. Bubble Restoration

Due to node mobility, it may happen that no nodes are
available to anchor the bubble to the desired location and the
bubble may temporarily disappear. To address this scenario,
the bubble-sensing system provides a mechanism for bubble
restoration through the actions of bubble carrier nodes (e.g.,
nodeC in Figure 1). Mobile phones filling the bubble carrier
role require localization capability and a connection to the
backend bubble server. Bubble carriers periodically contact
the bubble server, update their location, and request any active
sensing bubbles in the current region. If a bubble carrier visits
the location of one of these bubbles and does not hear any task
broadcasts, it attempts to restore the bubble by broadcasting
the task without the special anchor field set (in the same way
the bubble creator did initially). Through this method, either
the bubble will be restored with a new anchor node taking over
the bubble maintenance, or this attempt at restoration fails.
Bubble restoration attempts continue via the bubble carriers
until the bubble expires (as indicated by theduration field in
the bubble task definition).



III. I MPLEMENTATION

We build a proof-of-concept mobile cell phone test bed to
demonstrate the bubble sensing system. The test bed consists
of Nokia N80 and N95 smart phones, both of which run
Symbian OS S60 v3. Due to the security platform in Symbian,
some hardware access APIs are restricted at the OS level
and are not open to developers, or require a high privilege
certificate. In light of the platform limitations on these two
mobile phones, in this section, we discuss the options available
and our implementation choices.

A. Programming Language

We use PyS60 (http://sourceforge.net/projects/pys60/) to
prototype our system. PyS60 is Nokia’s port of Python to the
Symbian platform. It not only supports the standard features
of Python, but also has access to the phone’s functions and the
on-board sensors (e.g., camera, microphone, accelerometer and
GPS), software (e.g., contacts, calendar), and communications
(e.g., TCP/IP, Bluetooth, and simple telephony). In addition to
that, the developer can easily add access to the native Symbian
APIs using the C/C++ extension module. In this regard, PyS60
is more flexible than Java J2ME in providing robust access to
native sensor APIs and phone state, as we discovered in our
initial development.

B. Communication

The Nokia N80 and N95 mobile phones are both equipped
with GPRS/EDGE, 3G, Bluetooth and WiFi interfaces. For
data uplink, they can leverage GPRS, SMS, and MMS for the
universal connectivity, and WiFi/Bluetooth access pointscan
also provide Internet access when available. For local com-
munication, Bluetooth and WiFi are two possible choices. In
our test bed, WiFi is our choice for both local communication
and communication to the Internet. Considering the cost of the
data service for GPRS and existing open WiFi infrastructurein
the academic and urban environments, WiFi is a viable option
for Internet access. To implement bubble-sensing, broadcast
is fundamental and indispensable. While our initial choicefor
local communication was Bluetooth since it currently enjoys
a higher rate of integration into mobile phones, we found peer
to peer broadcast with Bluetooth technology to be particularly
difficult. Fortunately, we can configure the phones to use the
Ad-Hoc IEEE 802.11 mode and the UDP broadcasting over
WiFi is relatively easy to use. In out current version, the phone
uses Ad-Hoc mode when interacting locally with peers, and
infrastructure mode to connect to the bubble server. Phonescan
switch between these two modes on the fly when necessary.
The lag of the mode switch is as low as a few seconds. We
also set the transmit power of the WiFi interface to the lowest,
4mW, in order to save energy.

C. Sensors and Classifier

Camera and microphone sensors are universal on mobile
phones nowadays. In our experiment, to save storage and
lower the transmission load, we use lower resolution pictures
(640× 480 pixels). For sound, we record two second sound

Fig. 2. The BluCel device provides a 3D accelerometer that can be connected
to the mobile phone (e.g., Nokia N95 or N80) via Bluetooth.

clips in .au format; each sound clip is about 28 kB. All
data collected are time stamped. For the accelerometer and
GPS sensors, the N95 comes with an on-board GPS and
a built-in 3D accelerometer. We extend the N80 using the
external BluCel device (see Figure 2), basically a Bluetooth-
connected 3D accelerometer. Both types of accelerometers
are calibrated, and the data output are normalized to earth
gravity. The sampling rate is set to 40 Hz. Phones perform
some relatively simple processing on the data samples (e.g.,
mean, variance, and threshold) and feed the features extracted
from data samples to a simple decision tree classifier, which
classifies the movement of people carrying the phone. The
classifier does not require the user to mount the mobile phone
in a particular way; users can simply put the phone in a pocket
or clip it on the belt. The tradeoff for this flexibility is that
the classifier can only differentiate basic movements of people,
i.e., stationary, walking, running. Complicated movements like
stair-climbing and cycling will likely by classified as either
walking or running. However, our system only requires the
discrimination between stationary and moving. In this sense,
this light weight classifier provides sufficient accuracy (see the
confusion matrix in Table I).

Stationary Moving
Stationary 0.9844 0.0155
Moving 0.0921 0.9079

TABLE I
THE CONFUSION MATRIX FOR OUR STATIONARY/MOVING CLASSIFIER.

D. Localization

There are many existing solutions that provide a localiza-
tion service for mobile phones, including built-in/external-
connected GPS, cell-tower triangulation (GSM fingerprint),
Bluetooth indoor localization, and WiFi localization systems
such as Skyhook and Navizon. For Symbian, to get all the
cell towers information requires a high privilege certificate not
available to most developers. Usually, the developer can only
get the information about the cell tower to which the phone
is currently connected. This does provide a rough sense of



Static Ideal Limited Location- Mobility-
based based

All Out
Trial 1 158 1026 181 967 1004 78
Trial 2 143 679 165 579 607 42
Trial 3 98 324 74 294 304 40

TABLE II
SAMPLE COUNTS FOR THE FIVE SCHEMES DESCRIBED INSECTION IV-A:

STATIC, IDEAL , LIMITED , LOCATION-BASED, MOBILITY -BASED.

where the device is, but is not sufficient for the triangulation
algorithm. Therefore, in the outdoor case we simply use
GPS. For indoor, the WiFi fingerprint is a natural choice
for academic and urban environments, given the relatively
widespread coverage of WiFi infrastructure.

E. System Integration

Use of the mobile phone as a sensor in the bubble-sensing
system should not interfere with the normal usage of the
mobile phone. Our bubble-sensing software implementationis
light weight, so users can easily switch it to background, and
use their phone as usual. The software only accesses sensors
on demand and release the resources immediately after use. An
incoming or user-initiated voice call has high priority, and our
software does not try to access the microphone when it detects
a call connection. By adapting in this way, our implementation
does not disrupt an ongoing call and also the bubble-sensing
application will not get killed by an incoming call. We test the
CPU and memory usage of our software in a Nokia N95, using
a bench mark application, CPUMonitor [13]. The peak CPU
usage is around 25%, which happens when sound clips are
taken. Otherwise, the CPU usage is about 3%. The memory
usage is below 5% of the free memory, including the overhead
of the python virtual machine and all the external modules.

IV. T ESTBEDEVALUATION

In order to evaluate our implementation of the bubble-
sensing system, we perform a series of indoor experiments.
The aim of this evaluation is to validate the performance of
a mobile cell phone network and how it can benefit from the
use of bubble sensing mechanisms, mainly in terms of the
number of data samples collected and the time coverage of
those samples.

A. Experiment Setup

Ten mobile phones are carried by people who move around
three floors of the Dartmouth computer science building. The
carriers stay mobile for the duration of the experiment, except
for momentary pauses at the water cooler, printer, or desk
(to check for important emails). No particular effort is made
to orchestrate the mobility to maintain density in the sensing
bubble or elsewhere. The participants are told to carry the cell
phones as they normally would. Most of the time the mobile
phones are put in the front or back pockets and sometime
held in the hand (e.g., when making a call, checking the
time, sensing a SMS message, etc). Static beacons are used

to provide a WiFi localization service. In our experiments,the
center of the task bubble is defined to be the Sensor Lab,
which is a room on the middle of the three floors. The task is
assumed to already be registered by the bubble creator. During
the experiment, we play music in the bubble and the task
is simply capturing sound clips in this room once every ten
seconds. To emulate a heterogeneous network, we intentionally
limit device capabilities (i.e., long range connectivity and
localization) in some cases. We evaluate the following five
different cases:

• Static sensor network. for comparison, we deploy one
static sensor node (a N95) in the center of the bubble,
programmed to periodically do the sensing. The static node
is about three meters away from the source of the music, a
pair of speakers, and the microphone is pointed in the direction
of the music source.
• Ideal mobile sensor network.Mobile nodes in the net-

work always have cellular data uplink and localization and
can therefore always retrieve the bubble task from the bubble
server, and can tell when to do the sensing. No bubble sensing
techniques are used; in fact none are required since all nodes
know about all bubble tasks in the system. The results of this
case represent an upper bound on what can be expected in the
system when using mobile sensors.
• Limited-capability mobile sensor network. Assuming

universal always-on connectivity is unrealistic, for bothtech-
nological and social reasons. Many are unwilling to pay the
extra monthly charge to add data service to their cellular ser-
vice package. In urban environments, such as New York City,
we experience frequent dropped connections even outdoors at
street level due to interference and fading. Cellular reception
indoors is even more inconsistent due to signal attenuation. In
rural environments like Hanover, NH, we experience frequent
dropped connections due to borderline coverage. Here we
make the more realistic assumption that mobile nodes have
only a 0.25 probability of an available data uplink (abilityto
fetch the task from the bubble server and do the sensing) at
the moment when they enter the bubble. In this scenario, all
nodes are still assumed to have the capability for localization.
Again, no bubble-sensing techniques are used.
• Bubble-sensing with location-based bubble mainte-

nance.This scenario builds on the limited-capability mobile
sensor network case by adding bubble carrier and bubble
anchor functionality. Therefore, any nodes they hear task
broadcasts and are in the bubble will do the sensing. Bubbles
are maintained using the location-based scheme (universal
localization capability assumed), and are restored using bubble
carriers. Mobile nodes entering the bubble location become
task carriers with a 0.25 probability as before.
• Bubble-sensing with mobility-based bubble mainte-

nance.This scenario mirrors the previous, but uses mobility-
based bubble maintenance which does not require localization
for sensing nodes or anchors, but instead uses radio range to
define the bubble size and inference of human mobility from
accelerometer data [10] to estimate relative location to the



0 50 100 150 200 250 300 350 400 450 500

Static 

Ideal 

Limited 

Mobility−based

Location−based

Time

Fig. 3. Sensing coverage over time for each of the five test scenarios described in Section IV-A. The circled points are samples taken outside the bubble
due to bubble drift. The bubble sensing cases do a good job of approximating the ideal case, especially for the location-based bubble maintenance case.

bubble. Mobile nodes entering the bubble location become
task carriers with a probability of 0.25 that now includes
the probability of having both an available data uplink and
localization capability.

The mobility of the human participants is uncontrolled, but
clearly plays a dominant role in the sensing coverage achiev-
able with the bubble-sensing system. Similarly, environmental
factors impact the noise environment and thus impact the data
that are collected by the mobile sensors. To ensure the five
schemes are evaluated in the same environment, we implement
them all in the same multi-threaded application and collect
data for them simultaneously. The data samples are stored
locally and forwarded to the bubble server opportunistically
when the phone switches to infrastructure mode, for the
duration of the experiment. Any remaining data is transferred
to a laptop over USB at the end of the experiment. The analysis
is done offline in the backend sever.

B. Results

We conduct three trials using 11 mobile phones at different
times of the day, including both day and night, to capture
natural variations in density and mobility pattern. Trial 1lasts
1936 seconds during the day-time work hours when people are
more stationary; Trial 2 lasts 1752 seconds during the evening-
time work hours; trial 3 lasts 1198 seconds during a more
mobile period. In some cases, we did not get data from all
the mobile phones; some did not enter the bubble, and for
others the user profile prohibited them from participating (i.e.,
emulated by the 0.25 probability for task download). We got
data from 9, 8, and 7 for the trials 1, 2, and 3, respectively.
Table II shows raw sample counts taken during each of the
trials for each of the five schemes. The table also indicates
the samples taken outside of the bubble due to drift in the
mobility-based scheme.

Figure 3, shows the time distribution of the collected data
samples. It is a 500 second snap shot of trial 2. Each dot in this
figure represents one sample. The Y axis lists the five schemes
we compare. The distribution of all the mobile schemes is
not uniform, because the ability to sense is influenced by
uncontrolled mobility. For the mobility-based bubble-sensing
scheme, the circled dots show where samples are taken outside
the bubble due to bubble distortion and drift. In all mobile

0 100 200 300 400 500

0

2

4

6

8

10

12

x 10
−3

Time

R
M

S
 (

 P
ow

er
 )

 

 
SB w/o Loc
Static Node

Fig. 4. In terms of data fidelity, the bubble sensing approachprovides sound
data whose trend follows that of the static sensor. In practice, the required
fidelity of the signal captured by the task is application-specific.

schemes, sometime we have dense readings because multiple
sensors stay in the bubble, and sometimes there is a gap in
the sensor data due to the absence of sensors. In terms of
sensing coverage over time, the bubble-sensing schemes give
a good approximation of the ideal mobile sensing scenario,
especially in the location-based bubble maintenance case.For
the mobility-based bubble maintenance base, we see that the
percentage of samples taken outside the defined bubble is less
than 10%, which we conjecture is an acceptable error given
the flexibility the scheme provides in not requiring localization
for sensing nodes or bubble anchors. Further, data just outside
the bubble may still be of use to the data consumer.

To examine how the data collected by the bubble-sensing
system compares with that from the static node, we compute
the root mean square (RMS) of the average sound signal
amplitude. In Figure 4, we plot the RMS derived from every
sound clip recorded by the two different schemes, the static
node (thick red) and bubble sensing with mobility-based
bubble maintenance (thin blue). The bubble-sensing curve
contains more data points (140) than the static curve (41),
reflecting the mobile nodes that opportunistically sample over



the 500 second window, as opposed to the single periodic
static sensor. While the two curves share general trends, they
do not match exactly. There are two main factors contributing
to this phenomenon, i.e., mobility and context. The static node
remains stationary 3 meters from the sound source, while the
mobile nodes move in and out of the audio range of the source,
affecting the volume of the samples. Another factor affecting
the volume is the sampling context. Users carry the cell phone
in their pocket and the pant material serves as a kind of muffler.
Also, the orientation of the microphone matters. However,
the sampled data does match the general sound situation in
the target region, which may be good enough to support
applications when static sensor deployments are not present.
Thus, bubble-sensing provides the flexibility of personalizable
sensing regions, but sacrifices some signal fidelity.

V. RELATED WORK

While the mobile phone is ubiquitous, and the discussion of
a mobile phone as a sensing device has some history [8] [5]
[2] [1], no large-scale mobile cell phone sensor networks have
yet been deployed in practice. In the last year, the smart phone
market has grow rapidly (e.g., Nokia N95, Apple iPhone,
Goggle gPhone), leading to a great research opportunity. In
this paper we present our first attempt to build a mobile cell
phone network.

Use of information locality to achieve efficient, scalable
sensor networking is a hot topic. Ratnasamy,et al discuss the
use of data centric storage to reduce the transmission overhead
[11]. The authors of [9] use a publish/subscribe mechanism to
opportunistically disseminate information within a specified
geographical area using a vehicular networks. In contrast,in
our work we focus on the locality of the sensing task, and
discuss how to fulfill the sensing task on top of a cloud of
human-carried smart phone-based sensors in the urban sensing
context.

VI. CONCLUSION

We presented an approach to support persistent location-
specific task in a wireless sensor network composed of mobile
phones. Mobile sensor nodes collaborate and share sensing
and communication resources with each other in a cooperative
sensing environment. We describe the virtual roles nodes can
assume in support of bubble-sensing, including the required
local and backend communication. We discussed the lim-
itations, available options and our design decisions in the
implementation of a mobile phone-based sensing system. We
demonstrated the feasibility of our scheme via a real test bed
experiment using people carrying mobile phones.

ACKNOWLEDGMENT

This work is supported in part by Intel Corp., Nokia,
NSF NCS-0631289, and the Institute for Security Technol-
ogy Studies (ISTS) at Dartmouth College. ISTS support is
provided by the U.S. Department of Homeland Security under
Grant Award Number 2006-CS-001-000001. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

REFERENCES

[1] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L.Guibas,
A. Kansal, S. Madden, J. Reich. Mobiscopes for Human Spaces.IEEE
Pervasive Computing, vol. 6, no. 2, pp. 20-29, Apr-Jun, 2007.

[2] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,S. Reddy,
M. B. Srivastava. Partcipatory Sensing. InProc. of 1st Workshop on
Wireless Sensor Web (WSW’06), pp. 1–5, Boulder, October 31, 2006.

[3] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo and R. A. Pe-
terson. People-Centric Urban Sensing (Invited Paper). InProc. of 2nd
ACM/IEEE Int’l Conf. on Wireless Internet, Boston, Aug 2-5, 2006.

[4] K. Chang, N. Yau, M. Hansen, and D. Estrin. SensorBase.org A
Centralized Repository to Slog Sensor Network Data. InProc. of
the Int’l Conf. on Distributed Computing in Sensor Networks/Euro-
American Workshop on Middleware for Sensor Networks, San Francisco,
Jun 2006.

[5] N. Eagle and A. Pentland. Reality Mining: Sensing Complex Social
Systems. InJournal of Personal and Ubiquitous Computing, Jun 2005.

[6] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,
and A. T. Campbell. The BikeNet Mobile Sensing System for Cyclist
Experience Mapping. InProc. of 5th ACM Conf. on Embedded
Networked Sensor Systems, Sydney, Nov 6-9, 2007.

[7] S. B. Eisenman and A. T. Campbell. “SkiScape Sensing”. InProc. of
ACM 4th Intl Conf. Embedded Networked Sensor Systems, 2006.

[8] A. Kansal, M. Goraczko, and F. Zhao. Building a sensor network of
mobile phones. InProc. of 6th Int’l Conf. on Information Processing
in Sensor Networks, Cambridge, Apr 25-27, 2007.

[9] I. Leontiadis and C. Mascolo. Opportunistic spatio-temporal dissem-
ination system for vehicular networks. InProc. of 1st Int’l Mobisys
Workshop on Mobile Opportunistic Networking, San Juan, Jun 11 2007).

[10] J. Lester, T. Choudhury, and G. Borriello. A Practical Approach to
Recognizing Physical Activities. InProc. of Pervasive, Dublin, May
2006.

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. GHT: A Geographic Hash Table for Data-Centric Storage
in SensorNets. InProc. of 1st ACM Int’l Workshop on Wireless Sensor
Networks and Applications, Atlanta, Sep 2002.

[12] K. Romer, C. Frank, P. Jose Marron, and C. Becker. Generic role
assignment for wireless sensor networks. InProc. of 11th ACM SIGOPS
European Workshop, pp 7–12, Leuven, Sep 2004.

[13] CPUMonitor 1.10 for S60v3. http://www.nokiapower.com/index.php?
showtopic=7542.

[14] G. M. Djuknic and R. E. Richton. Geolocation and Assisted GPS.IEEE
Computer, Vol. 34, No. 2, pp. 123-125, Feb, 2001.

[15] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. E. Smith,
J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert,P. Powledge,
G. Borriello and B. N. Schilit. Place Lab: Device Positioning Using
Radio Beacons in the Wild. In Proc. of Pervasive, pp. 116-133, 2005.


