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ABSTRACT

We present VibN, a mobile sensing application deployed at
large scale through the Apple App Store and the Android
Market. VibN has been built to determine “what’s going
on” around the user in real-time by exploiting multiple sen-
sor feeds. The application allows its users to explore live
points of interest of the city by presenting real-time hotspots
from sensor data. Each hotspot is characterized by a demo-
graphics breakdown of inhabitants and a list of short audio
clips. The audio clips augment traditional microblogging
methods by allowing users to automatically and manually
provide rich audio data about their locations. VibN also al-
lows one to browse historical points of interest and view how
locations in a city evolve over time. Additionally, VibN au-
tomatically determines a user’s personal points of interest,
which are a means for building a user’s breadcrumb diary of
locations where they have spent significant amount of time.
In this paper, we present the design, evaluation, and results
from the large scale deployment of VibN through the popular
Apple App Store and Android Market.
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INTRODUCTION

Sensor-enabled smartphones are becoming a mainstream plat-
form for researchers to collect information-rich data because
smartphones allow the characterization of human activity
and context at scale [11, 8, 2, 12]. We believe that continued
research in smartphone sensing will allow us to characterize
people, places, and communities as never before possible.
As a case example, CenceMe [11] is an application that in-
fers a person’s activity and context using multiple sensors
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Figure 1. CenceMe inference data generated over a month across 20
subjects in Hanover, New Hampshire.

in a mobile phone. Figure 1 shows CenceMe data collected
in Hanover, New Hampshire, over a month across 20 users.
Aggregate activities such as sitting, standing, walking, and
running are represented by colored markers. We can easily
examine the geographic distribution of basic human activ-
ities and reason about location relationships. For instance,
the red circle in Figure 1 marks the Computer Science de-
partment at Dartmouth College, which is mainly character-
ized by the “sitting” inferred state. CenceMe’s inference is
in accordance with the nature of a computer science depart-
ment, i.e., the department is in an office building where peo-
ple are mostly sitting during their work hours. The CenceMe
example helps us understand the significance of collecting
data using a continuous sensing application running on mul-
tiple smartphones. We are given the opportunity to charac-
terize spaces at a very fine grained level, which is gener-
ally impossible without burdensome subject polling. Such
information may be useful, for example, to help city man-
agers understand how people exploit urban spaces, resulting
in improved urban planning. Alternatively, physicians may
learn the health behavior of a community and use this infor-
mation for community health assessment and recommenda-
tions. Distributed sensor monitoring and inference can pro-
vide real-time insights, augmenting inter-person interaction,
as well as interactions between people and spaces. Ques-
tions we may answer include: what music is being played
at a particular club right now, how many people are at the
club, and what are their demographics? Where is the qui-
etest place in the city to read a book? How many people are
jogging in the park right now, so that I won’t be alone during
my run today?



This paper presents VibN [1], a continuous sensing applica-
tion for smartphones. The goal of VibN is to answer ques-
tions such as those posed above by collecting sensor data,
executing inferences, and presenting results to users that in-
form them in real-time about “what’s going on” around them.
VibN automatically provides structured visual information
about the places people spend their time by displaying real-
time hotspots of the city, which we call Live Points Of Inter-
est (LPOI). We think this paradigm poses vast improvement
over other models that are constrained by manual input, such
as in the Wertago application. A LPOI, which is derived
from a backend clustering algorithm, is represented by the
demographics of its inhabitants, such as average age, ratio
of men and women, and their relationship status. VibN al-
lows its users to replay historical LPOIs, encouraging obser-
vation on how hotspots and their demographics evolve over
time. In this work, we define a point of interest as any lo-
cation that people spend a significant quantity of their time.
Thus, places of work, living, and entertainment are points
of interest. VibN also introduces a new dimension to mi-
croblogging through the Vibe it! feature, which allows a user
to record audio commentaries. Audio input provides richer
means of building understanding about locations, activities,
and events than the current short text microblogging model.
However, because VibN is founded on an opportunistic sens-
ing paradigm [4]—where the user is not an active participant
in the sensing phase—it also transparently records short au-
dio clips in the background to provide near continuous audio
context. Segments of audio containing voice are filtered out
from the clip to preserve the user’s privacy. VibN also au-
tomatically and transparently builds a personal diary, giving
the user an opportunity to track locations of significance and
related audio vibes. This paper will discuss our system de-
sign, implementation, and evaluation of VibN.

In summary, these are the key contributions of our work: 1)
We show that VibN, by running continuously in the back-
ground on smartphones, is able to characterize the way peo-
ple and communities interact with the locations they inhabit.
2) We present the design, implementation and evaluation of
VibN, which has been deployed at large scale through the
Apple App Store and the Android Market, and used by over
1000 users in six months of operation.

DESIGN
In this section, we present the design of the phone and back-
end architecture of the VibN application.

Phone Client

The client design is modular and can be implemented on
both the iOS and Android platforms according to the same
principles of flexibility and efficiency. In the following, we
describe VibN’s components and design principles, followed
by native differences that impact the implementation.

Sensing. We use accelerometer, audio, and localization sen-
sor data for our application. A sensing manager activates
sensors according to the directives of a duty cycling man-
ager. All data is sensed transparently, except for audio sens-
ing, which can also be activated by the user. Transparent
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Figure 2. VibN personal view and personal details view on the iPhone.

sensing occurs in the background without the user’s active
participation. Background audio “vibes” are introduced to
periodically capture a person’s context. The Vibe it! feature
allows active participation by the user, in which they can
initiate recording of a short audio clip. Every Vibe it! clip
is geo-tagged before being uploaded to the server backend.
All sensor data is handled by two components: the personal
data manager, which is responsible for the personal diary
points of interest; and the communications manager, which
handles bi-directional communications with the VibN server.
The i0S and Android platforms have different methods for
handling their native location and audio engines. VibN has
been adapted to accommodate these differences.

Duty Cycling Manager. The Duty Cycling Manager or-
chestrates sensing-sleeping cycles in order to optimize re-
source usage. It is important to carefully allocate duty-cycles
for mobile sensing applications in order to conserve resources,
in particular battery power. We emphasize localization en-
gine (GPS, WiFi, and cellular) regulation, the continuous use
of which can dissipate a phone’s battery within a few hours.
VibN is not designed for continuous location tracking; its
goal is to identify significant points of interest. We conjec-
ture that people tend to spend at least 30 minutes at a time
at important locations, such as the home, work, gym, restau-
rants, clubs, etc. We leverage this assumption and design the
duty-cycling algorithm to activate the localization engine af-
ter long intervals (between 30 minutes and 1 hour) and report
data to the server only if the location has remained static. In
this way, we maximize the likelihood that the system cap-
tures locations that are visited for intervals longer than the
sensor’s sleep cycle, while ignoring places visited for short
intervals. There are two advantages to our approach: it ex-
tends battery lifetime by applying long sleep cycles; and it
promotes data pre-filtering for the server-side LPOI cluster-
ing algorithm.

Personal Data Manager. This module manages the user’s
personal diary by: determining if a data point (location, or
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Figure 3. VibN live and historical views on the iPhone.

location plus audio vibe clip) is a new significant location for
the user; and inserting the new data point into the personal
local data cache. The personal data cache is built according
to a first-in first-out (FIFO) queueing policy.

The personal data manager determines the significance of a
location by analyzing the duration of a user’s visit. If the
visit exceeds a time threshold, then the manager flags the lo-
cation as significant. We empirically use a fixed threshold
of two hours, which we believe to be reasonable consider-
ing that people often visit significant locations such as the
office or home for longer. We realize that this policy may
not generalize well to all users, since people have different
living habits and styles. Future releases will give users direct
control over this parameter.

The VibN personal view for iOS is shown in Figure 2. The
personal view allows a user to examine their life pattern.
Green blobs (Figure 2(a)) indicate locations that the system
deems significant. By tapping a green blob one can exam-
ine personal activity details, for example view what times a
location was visited and listen to audio vibes recorded there
(Figure 2(b)).

LPOI Manager. The LPOI manager maintains up-to-date
live and historical points of interest on the phone and par-
titions them by time windows (see Figure 3). Points of in-
terest are refreshed in two cases: when the application is
being launched; or when the application resumes from the
background. Upon refreshing, the application automatically
downloads points of interest co-located near the user.

Along with the audio vibes, a point of interest is charac-
terized by the demographics of its visitors. Demographic
metrics include average age, average relationship status, and
gender ratio. In the current implementation, demographic
information is manually provided by users in the applica-
tion’s settings. In the future, we plan to leverage sensor data
to automatically infer demographic data. For instance, voice
pitch detection may be used to infer gender.

As the LPOI manager receives points of interest from the
server, it partitions them according to time. A “live” bin re-
ceives points of interest derived from activity in the last hour.

Historical bins are used to replay LPOI evolution over time
(up to a month in the current implementation) by means of
a graphical slider. The historical view allows easy identifi-
cation, examination, and comparison of consistent hotspots
versus transiently popular locations. By looking at a point
of interest’s details, we may observe the current demograph-
ics of a hotspot, e.g., a LPOI could be characterized by 50%
males, with a mean male age of 33, mean female age of 26,
and 50% single status.

User Feedback Manager. User studies, in which users are
asked to report on their experience or to suggest new fea-
tures, are necessary to assess the performance of a system.
However, it is not always possible to collect the same qual-
ity data for large-scale deployments as for small and medium
scale projects, as we have less control over compliance and it
takes more time to distribute surveys over a large population.
VibN’s solution is the User Feedback Manager, which can
dynamically survey users by presenting questions directly to
the client. We are able to push down new survey questions
from the server as new needs arise. Answers are uploaded
to the backend providing us immediate access to important
usability data.

Differences between VibN iOS and VibN Android

While the VibN iOS and Android implementations respect
the high level architectural design guidelines of the system
discussed above, these platforms present differences in some
of their basic low level functions. In particular, the respec-
tive platforms handle localization and accelerometer man-
agement differently. These functions are dealt with sepa-
rately for each platform.

Localization. The Android location engine is more flexible
than the iOS counterpart. It allows the programmer to indi-
vidually enable localization components such as GPS, WiFi,
and cellular. This makes it easier to optimize resource us-
age, in particularly power. Phone resources demand careful
handling when designing continuous mobile sensing appli-
cations, and the individual management afforded by Android
provides increased flexibility. The iOS, however, provides
less fine grained control. The programmer must specify a
desired localization accuracy, which is parametrized in three
levels: low, medium, high. The iOS itself decides which
localization components to use in order to meet the accu-
racy requirements. This lack of low-level control hinders
thoughtful resource management by the programmer.

Accelerometer. Smartphone’ sensors have been mainly in-
troduced to enhance the user experience when interacting
with the devices, e.g., flipping the user interface from land-
scape to portrait mode with the accelerometer. For this rea-
son i0S currently shuts down the accelerometer when an ap-
plication is pushed to run as background process since there
is no active user interface that needs the accelerometer sup-
port. The consequence of this approach is the impossibility
to rely on a continuous accelerometer data stream, which is
the foundation for reliable activity inference. Android OS,
instead, maintains the accelerometer active even when the
application is sent to the background.



Backend

Data Collection. The VibN phone client interacts with the
backend using standard web service interfaces supported by
the Python web.py framework under a standard Linux dis-
tribution. The VibN data, which we designate as “vibes,”
consists of the following: 1) location only vibes; 2) audio
vibes captured by the application automatically; and 3) au-
dio vibes generated by the Vibe it! feature.

In order to preserve the privacy of users we treat automat-
ically sampled audio vibes differently than the Vibe it! au-
dio vibes. When initiating an audio recording with Vibe it/
a user implicitly acknowledges that data collection is tak-
ing place. However, background audio vibes are generated
without user participation. For this reason, we apply an al-
gorithm that anonymizes audio vibes automatically recorded
by the phone. The algorithm removes short portions of audio
from the audio stream at regular intervals so that background
sounds can be identified (e.g., the sound of a car or music)
but the content of conversations cannot be reconstructed.

Clustering Engine. The clustering algorithm runs on the
servers, asynchronously to client queries, and it is based on
the density-based spatial clustering (DBSCAN) technique.
The reason for the adoption of DBSCAN is that, by being
density based, it operates in an unsupervised manner with-
out requiring the number of clusters to be computed as input
parameter like for K-Means. Clustering runs are processed
on a location tile and a time window. We use location tiles of
size 120 by 120 km and time periods ranging from 3 hours to
as long as 1 month. The output of a clustering run is a set of
points of interest, stored as a record in the indexing service.

Scaling. To handle scale and guarantee backend robustness
we use Amazon Elastic Cloud services. The advantage of
the elastic cloud service is that machines can be promptly
instantiated or terminated based upon demand. This is a de-
sirable feature when the user base can change over time, and
rapid adjustments to the backend might be needed to accom-
modate the application’s demand.

SECURITY, PRIVACY, AND TRUST

Security, privacy, and trust are important matters for mobile
sensing applications. As such, VibN attempts to ensure a
secure and trustworthy system with the following steps. Per-
sonal diary data never leaves the phone and the user has full
control over it. Uploaded data is stripped of any details that
could reveal a person’s identity. Details on live points of
interest are an aggregate representation of a location with-
out exposing any individual’s information. Data sent and
received over the wireless link is protected by SSL encryp-
tion. Users can disable the sensors at any time. Background
audio recordings are automatically stripped of vocal content
in order to preserve conversational confidentiality.

EVALUATION

VibN is implemented on iOS and Android and is able to
run on Apple iPhone/iPod Touch devices, as well as mul-
tiple Android phones. The application was released to the
public through the Apple App Store and the Android Market
on November 18, 2010. In approximately 6 months, 1000+

users have downloaded and used the application continu-
ously. In this section, we present a system characterization
of VibN, and a characterization derived from the large data
set collected from the app store users. As far as we know,
this is the first characterization of a mobile sensing applica-
tion released at large scale through the app stores.

System Performance

Since the location engine on these devices is the main bat-
tery drain, we focus on the battery life as a function of lo-
calization duty-cycles. From our experiments, we derive the
optimal location engine duty-cycle time to be 30 minutes.
After several weeks of application use, we determined this
to be the interval that minimizes battery usage while collect-
ing significant points of interest. With a 30 minute sleep
cycle, the iPhone 4 battery duration is on average about 25
hours, versus 40 hours on the Nexus One. The reason that
the Nexus One has a longer battery life is that Android pro-
vides native APIs to actively regulate the localization com-
ponents. This gives the developer flexibility to build more
power-efficient applications.

Personal Points of Interest

Personal points of interest are generated in two different ways:
when the application runs in the background, and when a
user records a Vibe it/ audio clip. In both cases, given the
localization error (which is larger indoors), we have to en-
sure that the system does not create different points of inter-
est for the same physical location. In order to achieve this
goal, a dampening scheme is required. It accepts new points
of interest only if they lie outside a bounding box centered
on the person’s location. The bounding box must be dimen-
sioned properly so that significant places are generated when
the person moves to nearby locations and a new significant
place is warranted. We evaluate the accuracy of points of
interest placement in indoor locations for different dampen-
ing box sizes, ranging in radius from 11 to 60 meters. When
the dampening region has a diameter of about 60 meters and
the user moves from location 2 to location 1 in an adjacent
building, the significant point of interest for Location 1 is
not captured by VibN because it is within the dampening re-
gion. We therefore set the dampening region radius to be 11
m so that the two locations can be distinguished. We find
this value to be robust across multiple indoor locations in
different locations. We are planning to introduce an adap-
tive dampening policy based on the localization error in the
future.

Backend Clustering

In this section we discuss the performance of the DBSCAN
clustering algorithm running in the backend to compute LPOIs.
DBSCAN takes two parameters: the scope of the clustering
(eps) and the minimum number of data points (k) necessary
to form a cluster. The algorithm’s performance as a function
of several parameter values is shown in Figure 4. The raw
vibe locations, uploaded from seven different locations, are
reported in Figure 4(a). After several experiments, we pick
k=5 and eps=0.002, which allows better clustering accuracy
and minimizes false positives. In fact, when a location is
significant, several data points can be found for that place.
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Figure 5. Spurious clusters caused by continuous location data upload.

We fix the minimum threshold to 5 data points to dampen
the impact of false positives.

We also show the positive impact of the phone data pre-
filtering algorithm. Continuous data uploads would generate
spurious clusters, which are the result of false positives gen-
erated by sparse location data. Figure 5 shows the results of
multiple phones continuously uploading data. Uploads are
at intervals of less than a minute along a path that includes
the locations reported in Figure 4(a), while stopping for sig-
nificant times in the locations of Figure 4(a). The density of
the vibes is larger in the original seven locations and lower
along the path. It can be seen from Figure 5 that the sparse
data along the path, which doesn’t represent points of inter-
est, create spurious clusters. Only four of the original LPOIs
can be identified (indicated by arrows in Figure 5). Hence
the pre-filtering approach on the phone boosts the clustering
performance.

VibN Usage Characterization

We present application usage statistics by analyzing data col-
lected from the Apple App Store and the Android Market for
more than 1000 users as of the time of writing.

Demographics. The VibN users’ age distribution is shown
in Figures 6(a) . It is interesting to observe that the average
VibN users’ age is below 30.

Device breakdown. The fraction of Android versus iOS
users is shown in Figure 6(b). It is interesting to see that
the number of Android users is larger than the number of

Table 1. Fraction of users allowing their data to be used for research
purposes.

Participating | Not participating
25% 75%

i0S users. We believe the reason is that Android OS is sup-
ported by many different smartphone models compared to
108, available only for Apple smartphones. With its more
flexible programming platform and absence of review pro-
cess, Android becomes a very appealing platform for re-
searchers to quickly roll out mobile sensing applications at
scale.

Usage pattern. It is important to identify the application
usage pattern in order to design a system that is flexible
enough to be responsive when necessary, for example to han-
dle bursts of users. In particular, by knowing when users are
mostly active (see Figure 6(c)), we design the VibN back-
end in order to: instantiate more machines to accommodate
high loads during the day, and make the clustering algorithm
more responsive during peak hours.

Privacy Settings. In order to use data for research purposes,
it is necessary to comply with the directives of the Institu-
tional Review Board (IRB) university committee, which re-
quires users to be informed if their data is going to be used
for academic research. To this end, we add an informative
text following the terms of service when the application is
downloaded asking the user whether they would like to par-
ticipate. The breakdown of voluntary user participation ver-
sus non participation is reported in Table 1. These num-
bers give an important message: it is still unusual for people
to find applications designed for research purposes on com-
mercial app store distribution systems. Consequently, by not
fully understanding the mechanism and the risks involved,
people simply opt-out from participating. Convincing peo-
ple to participate in research remains a challenge. This may
lead to slow user base growth and data collection process.

RELATED WORK

Smartphones are becoming a mainstream platform for real-
izing mobile sensing applications and frameworks at scale
[2, 5,9, 15, 3, 16, 19, 11, 12, 13, 10]. Several techniques
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Figure 6. VibN usage characterization.

to optimize the usage of the phone’s resources for contin-
uous mobile sensing applications have recently been pre-
sented [18, 14, 7]. Researchers consider mobile sensors a
scalable way to collect sensor data without the need of a
fixed infrastructure by using ad-hoc sensors on moving ob-
jects such as bikes [6], or smartphones with an application
for audio noise mapping [16]. These are examples of tech-
niques useful to derive sensor data maps of places and cities
in a scalable fashion. There is continuous growth of applica-
tions designed to promote awareness of city events, or as a
means of socially connecting people based on location, e.g.,
Foursquare.These applications are usually user input driven.
More recent applications, such as TweetMic, allow associa-
tion of audio clips with individual Twitter accounts. Overall,
these applications share a similar goal, which is to meet the
increasing interest in gathering real-time information about
places and to more efficiently take advantage of what a city
has to offer. The goal of VibN is to meet the demand for real-
time rich content information by exploiting continuous sens-
ing on smartphones. Researchers [17] have already started
to realize the opportunity behind using large scale applica-
tion distribution systems (such as app stores) to collect data
beyond the boundaries of a research lab. A study showing
how to apply a multi-modality sensing approach to correct
localization error has been shown in [2].

CONCLUSION
In this paper we presented the design, implementation, and

evaluation of VibN, a continuous sensing application for smart-

phones. We discussed the implementation of VibN for the
10S and Android platforms and showed its performance on
the Apple iPhone 4 and Google Nexus One. We presented
the characterization of the application from the release of
VibN to the public through app stores such as the Apple App
Store and the Android Market. We reported on the character-
ization of the application from the usage of over 1000 users
using it worldwide.
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