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Abstract

In this paper, a wireless body area network comprised of heterogeneous sensors is developed for wearable
health monitoring applications. The ultimate application space is in the context of pediatric obesity. The specific
task examined herein is activity detection based on heart rate monitor and accelerometer data. Based on statistical
analysis of experimental data for different key states (lying down, sitting, standing, walking and running), a multi-
modal detection strategy is proposed. The resulting detector can achieve 85-95% accuracy in state detection. It
is observed that the accelerometer is more informative for the active states, while the heart rate monitor is more
informative for the passive states.

I. INTRODUCTION

Wearable health monitoring systems coupled with wireless communications are the bedrock of an emerging
class of sensor networks: wireless body area networks (WBAN). The objectives of such WBANs are manifold
from diet monitoring [14], activity detection [3], [4], and health crisis support[6]. These new networks demand
significant technological advances from sensor development to novel software engineering, signal processing,
wireless communications and networking. Importantly, WBANs must be designed with application-specific design
and end-use requirements in mind. These advancements are necessary to cope with the unique challenges introduced
by deployment on people, such as: unpredictable mobility, heterogeneous sensor nodes, new wireless channels, very
low power requirements, non-invasive sensing and the need for sensors with small footprints. Furthermore, drawing
robust inference from sensor streams requires information from multiple, often disparate, sources. In the current
work, we provide preliminary results from the construction of a WBAN which we will use to drive the development
of assessments and interventions for pediatric obesity applications.

Pediatric obesity has emerged as a major national and international health crisis. National collected data from
2003-2006 show 11.3% of adolescents aged 12 - 19 years by some measures could be designated as obese; a further
16% would be classified as overweight and 32% considered at risk for being overweight [13]. While physical activity
(PA) is tightly related to lower obesity rates in children [11], [7], there are additional factors leading to obesity. The
increasing environmental stress may promote both general obesity (through lifestyle behaviors such as decreased
physical activity) and visceral obesity (through hypothalamic-pituitary-adrenal axis activation and increased cortisol
secretion)[5]. Current monitoring systems validated for research in children typically monitor physical activity only
(such as the much-used Actigraph accelerometer). However, in order to truly understand and reverse childhood
obesity, we need a multimodal system that will track stress levels, PA levels, blood glucose levels and other vital
signs simultaneously, as well as anchor these levels to context such as time of day and geographical location. Our
preliminary KNOWME network is a first step towards such a system.

A key aspect of our work is the unified design and evaluation of multimodal sensing and interpretation, for
automatically recognizing, predicting and reasoning about human physical activity and socio-cognitive behavior
states. On the one hand, this meets the needs of traditional observational research practices in the obesity and
metabolic health domain (based on, and validated through, careful expert human coding of data) while on the other,
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this enables new analysis capabilities that have not been possible before such as providing information on user
emotional state in conjunction with physical activity and energy expenditure.

Many aspects of human behavior are inherently multimodal or require multimodal processing. For example,
measuring and understanding energy expenditure and its etiology requires processing not only activity from ac-
celerometers but other data such as pulse rate, ECG, oxygen intake, as well as contextual information such as
emotions that are marked by humans through their voice, body posture and through physiological signals skin
conductance measures (electro dermal response). Hence, to model human behavior and task-specific activity, both
in terms of what people do, how they do it, and why they do it, it is critical to understand and capture the interplay
between such multimodal streams. Multi-modal coverage of our approach enables cross-channel comparison and
verification (allowing us, for example, to capture relationships between increased heart rate, increased emotional
activity, and changes in physical activity). Our approach to this problem is grounded in statistical signal processing.

In the current work, we summarize preliminary results on activity assessment. We consider a mix of low mobility
(lying down, sitting, standing) and higher mobility (walking, running) states. Features of our problem and approach
do appear in the prior literature. Much work on activity detection appears to center on accelerometer data alone
(e.g.[8], [3], [10]) with some systems employing many accelerometer packages. On the other hand, multi-sensor
WBANs have been implemented and deployed (see e.g. [12], [9], [6]); however in those works, the emphasis
was on the higher layer communication network processing and hardware design – signals from each sensor
were transmitted directly to a central decision making unit. Our focus is on a modest number of heterogeneous
sensors and the utilization of multi-modal signal processing methods; we wish to design decision making and data
interpretation methods that will reside within the WBAN and allow for interaction with the WBAN wearer. For
our pediatric obesity application, activity detection is an indirect measure of energy expenditure quantification as
discussed above. In [4], multi-modal classification is considered. There are some key differences to the approach
taken herein. First, while different sensors are employed, they are similar in the types of measurements taken (e.g.
accelerometers, gyroscopes and tilt measurements), herein we use sensors which measure fundamentally different
quantities that are correlated, but the statistical relationships are unclear a priori. The goal of [4] is to determine
a sampling scheme (with respect to frequency of sampling and sleeping/waking cycles) for multiple sensors to
minimize power consumption. The authors show that their new methods achieve reduced power relative to classical
joint schemes. Our goal is on classifier performance with heterogeneous sensors – future versions of our methods
could incorporate power minimization strategies of [4]. An important question to address is how the correlation
between measurements affects power minimization. We conjecture that the sensors employed in [4] have more highly
correlated observations with regards to the states of interest than our sensors and thus greater power minimization
is possible through the use of their methods.

As our WBAN must be used for a diverse set of decision making processes, all sensors may not be uniformly
useful for each task. We, in fact, see this with the activity detection problem considered herein.

II. KNOWME NETWORK ARCHITECTURE

Fig. 1. Three-tier architecture overview of wireless body
area network sensor system.

The basic foundation of the KNOWME network is our three
tier network architecture as depicted in Figure 1. The first tier’s
goal is data collection based on the heterogeneous sensors that
are coupled to a mobile phone which acts as a “base station,”
equipped with data transmission and processing capabilities.
The second tier is a web server that receives data and can
perform additional processing; the web server transmits the
data to the final tier: a back-end database server that stores the
information. In the sequel, we shall discuss the specific sensors
employed.

Currently, the primary focus of this research is to perform multi-modal sensing and interpretation of data to
serve some of the end-user needs. As such, significant effort has been spent in integrating heterogeneous sensors
to a mobile phone. One challenge in integrating heterogeneous sensors is that these sensors have different APIs,
packaging, and data collection methods. In addition to integrating multiple sensors, synchronization of the data
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received from multiple sensors in the phone is critical for statistical correlation of sensor data and to perform the
multi-modal data processing. Sensor information is continuously recorded on the local storage on the mobile phone.
Our mobile device platform has a 8GB in-built flash memory that can be used for storing sensor information. Sensor
data rates vary from 300bps for the accelerometers to 100 bps for the heart rate monitor. Using these data rates,
we estimate that our 8GB local storage can store 1000 days worth of data. As the Bluetooth wireless link is a
bottleneck for our current data collection, we use time-division multiple-access to schedule the data from different
sensors (equal time share).

The software development phase uses well-known unit testing to extensively test the mobile software suite. In
order to minimize errors in configuring the software, our software has several built-in checks to advise the user if
any of the sensor readings do not match expected sensor behavior. Since the mobile device has to transmit the data
to the backend servers, we are currently developing an opportunistic data transfer mechanism that uses an open WiFi
network where available to transfer data both efficiently and cheaply. In the absence of WiFi networks, the mobile
software is configured to automatically use the cellular data network to transmit the data. Our initial deployment
is mostly with graduate and undergraduate student test subjects with limited (on-going) pilot experiments with
children in the Exercise Physiology Lab at the USC Keck School of Medicine.

A. Sensor Systems

(a)                                                                            (b)                                                                                    (c)

Fig. 2. (a) ECG monitor, (b) pulse oximeter, (c) Nokia Smartphone (GPS and
accelerometer).

The sensor layer is a collection of off-the-
shelf devices that measure features which can
provide insight about metabolic activity; most
(with the exception of galvanic skin response)
are also capable of wirelessly transmitting this
data over a Bluetooth interface. The current
study employs an Alive Technologies[1] elec-
trocardiograph (ECG). The ECG is a single
channel device with 8 bit resolution and a peak sampling rate of 300 samples/second. The pulse-oximeter, also from
Alive, provides non-invasive monitoring of oxygen saturation (SpO2) and pulse rate. The oximeter is a Bluetooth
slave device that supports the Bluetooth Serial Port Profile (SPP). We also have BodyMedia WMS sensors [2] to
measure Galvanic Skin Response (GSR) 1 and motion estimation using accelerometers. We use feature rich Nokia
N95 as the mobile phone platform. N95 supports Bluetooth 2.0 + EDR for quick pairing with external Bluetooth
sensors, and has 3G and WiFi radios for high bandwidth data transfer. In addition to the high bandwidth radio
capabilities, the N95 mobile phone platform has a highly accurate built-in assisted GPS unit that uses a combination
of GPS satellites, cellular tower and WiFi scanning to obtain a GPS position lock in less than 10 seconds. The
stated location accuracy of GPS unit is 30 meters. We have observed accuracy at less than 3 meters in practice.
The data collected from multiple sensors is geo-tagged using the location data collected from the in-built GPS.
Furthermore, our system is also capable of audio and video tagging to assist users to supplement the automatically
collected sensor data (as in [14]). Some WBAN components are depicted in Figure 2.

III. ACTIVITY MODELING

Data collected from our experimental system setup can be used in multiple contexts, for instance by the users
to regularly monitor their physical well being as well as by medical practitioners in assessing the physical health
of their patients. Here, we describe one such application of using the data to automatically derive the activity of a
person with data collected from multiple sensors. Statistical modeling of various test subject states was undertaken
based on the data collected from the WBAN. We examined five different states: lying down, sitting, standing,
walking and running. Again, to reiterate, activity detection has been previously considered with an emphasis on the
use of many accelerometers, yielding a cumbersome network to wear. We conjecture that multimodal data analysis
will enable the achievement equal or even better accuracy and robustness in activity detection with fewer sensors.

1The data of the WMS GSRs are not currently included due to issues with time synchronization.
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Fig. 3. (L) ECG and (R) accelerometer data from the heart-rate monitor for sitting and
running.

In this research, multiple distributions
were considered to fit the data which
for each sensor was predominantly uni-
modal in nature. After extensive exper-
imentation, the use of the pulse oxime-
ter sensor was abandoned due to lim-
ited change in readings for any of the
states of interest for our activity de-
tection problem. Thus, we focused on
ECG and accelerometer data. The dis-
tributions under consideration were: T
location-scale, Gaussian, log-normal, logistic, log-logistic, one-side Gaussian and Laplacian. Where possible,
Gaussian distributions were selected to facilitate the determination of joint densities. The ECG data were pre-
processed as follows: peak detection was performed and the inter-peak time collected. The inter-peak time was
modeled as a Gaussian random variable. An average of the empirical variance for each of the axes over a pre-
specified window of time for the accelerometer data was employed. The walking and running state data were
modeled as Gaussian; however, the lower-activity level data (lying down, sitting and standing) was modeled as a
Laplacian to achieve a better fit. Figure 3 (L) and (R) shows the ECG and accelerometer data for the running and
sitting modes, respectively. We see that both states are relatively well distinguished from each other with significant
differences in the accelerometer data.
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Fig. 4. (L) Statistical fitting for higher activity states (accelerometer data): sitting,
walking, and running. (R) Statistical fitting for lower activity states (ECG data): lying
down, sitting, and standing.

Not surprisingly, ECG and accelerom-
eter data had different discriminatory
properties for the various states, un-
derscoring the benefits of multi-modal
sensing and signal processing. In Fig-
ure 4, we see the statistical fits for
the accelerometer data for high activity
states and the statistical fits for the ECG
data for low activity fits. To develop
bivariate models (joint densities) for the
ECG and accelerometer data, additional
processing (resampling) was required to

determine the correlation between the ECG statistic and the accelerometer statistic in the high-activity levels.
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Fig. 5. Bivariate distributions for (L) running, walking and sitting and for (R) lying down, sitting
and standing.

In the low-activity level
cases, the ECG and accelerom-
eter statistics were assumed to
be independent. The resulting
bivariate densities for each of
the five hypotheses are shown
in Figure 5(L) and (R). For
clarity, the low activity states
are shown separate from the
higher activity states. Bivari-
ate testing yielded state detec-
tion rates on the order of 85%
to 95% – achieving detection
rates with two heterogeneous
sensors comparable to the rates found in [3], where nine single mode (accelerometer) sensors were employed.
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IV. OBSERVATIONS AND ONGOING WORK

Our preliminary system successfully collects data and transmits it to the cellular phone. We conjecture from
our experiments that a few heterogeneous sensors may offer better discrimination and robustness than many
homogeneous sensors. Our preliminary data for activity detection in comparison to [3] appears to bear this out this
conjecture. There are however important engineering challenges associated with WBANs, especially for activity
detection. For our particular set up, we are limited by the mobile phone platform which can only accommodate a
maximum of eight different sensors. If all sensors sample at their maximum sampling rate, the expected throughput
would exceed the capabilities of the Bluetooth link leading to dropped packets. The battery power of the cellular
phone is another bottleneck for the system. Finally, for activity detection, high activity/mobility can impair a sensor’s
ability to sense. This fact can be viewed two ways: it is detrimental in that we lose sensor accuracy, on the other
hand, new features are introduced into the signal which are still indicative of high activity. Our preliminary results
suggest that sensor selection and prioritization will be important to ensure that packets are not lost; furthermore
energy aware sensor management will be critical.

We have recently conducted a pilot study with two pre-adolescent girls following an observation protocol typical
for pediatric obesity studies. We are currently analyzing this data, including designing multi-modal detection
algorithms for deciding between the various states. We hope to share those findings at the workshop. Finally,
introducing contextual cues for use of the WBAN in everyday life will be extremely important; to this end, the
image processing and analysis methods of DietSense [14] will prove very useful. Finally, as noted earlier, power
minimization is of high importance for WBANs and their attendant applications; we expect the methods of [4] will
have promise when properly adapted to our context.
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