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Abstract

Sensors integrated into mobile phones have the advantage of mobility, co-location with peo-
ple, pre-built network and power infrastructure, and potentially, ubiquity. These characteristics,
however, also present significant challenges. Mobility means non-uniform sampling in space,
and also constrains the size and weight of the sensors. In this paper, we focus on non-uniform
sampling, and imprecision. We investigate the question, “Assuming well calibrated sensors,
what precision can we expect from a network of sensors embedded in location aware cell
phones?” We briefly describe some results that suggest that a Gaussian process based model
is appropriate.

I. Introduction
With increased public focus on environmental conditions and increasing industrialization of
developing countries, the need for environmental monitoring has increased significantly. Current
air pollution monitoring systems typically consist of highly sensitive, bulky equipment placed
in a few strategic locations. These systems, such as the California Air Resource Board (CARB)
monitoring system mostly monitor ambient levels over large geographic areas [1]. Not only do
systems like CARB have very coarse granularity, but they also only measure the human and
environmental health impacts of pollution indirectly.

The Networked Suite of Mobile Atmospheric Real-Time Sensors (N-SMARTS) project [2]
aims to radically improve the geographic coverage and granularity of environmental monitoring
by integrating pollution (and other environmental) sensors into location-aware mobile phones.
Our current sensor devices connect to the phone via Bluetooth, and will eventually fit into
a modified battery pack, for tight ergonomic integration. Sensors integrated into mobile
phones have the advantage of mobility, co-location with people, pre-built network and power
infrastructure, and potentially, ubiquity.

These characteristics, however, also present significant challenges. Mobility means non-
uniform sampling in space, and also constrains the size and weight of the sensors. Although
co-location with people means that samples will often be taken near a particular person, hence
providing a good approximation of a person’s exposure to pollution, co-location also means that
a person’s behavior (putting their phone in their pockets, riding in cars, remaining indoors vs.
outdoors) will impact the readings of the sensors. Tracking a person’s location also has enormous
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privacy implications. Ubiquity implies low cost and, coupled with size constraints, low-precision
sensors. Embedding sensors into a ubiquitous device also implies a passive sensing model, in
which the user can not be expected to perform any action to sense the environment, nor can
they be expected to calibrate or otherwise maintain the sensor.

In this paper, we focus on a small piece of this puzzle: non-uniform sampling, and imprecision.
We investigate the question, “Assuming well calibrated sensors, what precision can we expect
from a network of sensors embedded in location aware cell phones?” We make a case for using
a Gaussian Process noise model and show some early empirical and simulation results.

A. Problem formulation

Fig. 1. The test chamber allows pre-
cise control of the concentration of
toxic gases and fast response, which
allows precise calibration and char-
acterization of the sensors.

Fundamentally, we are interested in measuring and char-
acterizing the environment using sensors embedded in
location-aware mobile phones. For the sake of concrete-
ness, in this paper we focus on carbon monoxide, but
we believe that these results will extend to many other
environmental factors, including other gaseous pollutants,
aerosol pollutants, radiation and network signal strength.

Since we are interested in modeling the environment
as people experience it over time, we use a model
with two spacial dimensions (people basically move two
dimensionally), and a temporal dimension.

B. Data

In order to understand pollution sensors in greater detail,
we have designed a series controlled laboratory experi-
ments. To characterize the CO sensors we are using, we
use two electronically controlled mass flow controllers,
one attached to pure air, the other attached to 100ppm
CO air. The output of the flow controllers is then pumped
into a cylindrical chamber that contain six sensor and associated electronics. Finally, the gas is
injected into the laboratory’s exhaust system (see Figure 1). This setup allows us to precisely
control the concentration and rate of flow of CO in the sampling chamber. The sensors and flow
controller are monitored and controlled using a NI USB-6218 data acquisition module from
National Instruments attached to a laptop.

II. A Gaussian noise model
Sensor noise is often well modeled with a Gaussian distribution. One reason for this is that
Gaussian noise turns out to be a good model for a wide range of physical phenomenon, including
the thermal noise in electronics.

The CO sensor that we use produces a very faint signal, which makes it vulnerable to ambient
noise (e.g. the sensors receive and amplify this noise over the air), including AC power hum.
Figure 2(a) shows the noise deviation from the mean of readings from the sensor before and
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(a) Senor noise before and after
filtering with a 60Hz (and harmon-
ics) notch filter

(b) Sensor readings of concentra-
tion of CO(ppm) vs. time. Light
dots show the readings from a
single sensor. Dark dots show the
average of six sensors.

(c) Variance of the average signal
from a set of sensors (in ppm) vs.
the number of sensors in the set.
C

n
is show for reference.

Fig. 2. Empirical results with our CO sensors and test chamber.

after the 60Hz hum and its harmonics were removed using notch filters. The filtered noise is
Gaussian, providing some empirical justification to assume a Gaussian noise process.

III. Empirical results
As the density of sensors at a given location increases, we can increase our precision by super-
sampling, and averaging. For sensors with Gaussian noise (which our CO sensors exhibit)
sampling in the same location, we expect the variance of the signal to beC

n
if we average

the signals fromn sensors with noise varianceC. Note that when the noise is not Gaussian, the
noise power will still decrease, but at a slower rate.

In Figure 2(b), we a experiment with six sensors in a chamber in which we can control the
concentration of CO. In this case, we stepped the concentration of CO by 0.2ppm increments
over an hour, and observed the response of the sensors. The light dots show the response of one
sensor, and the dark dots show the averaged response of six sensors. Clearly the noise variance
has decreased. Figure 2(c) show the variance of the signal versus the number of sensors averaged.
The empirical results match the theoretical results closely!

IV. Gaussian processes
Using Gaussian process regression (GPR), we can also increase the precision of the system even
when samples are not in the same location in space-time (a more realistic situation). The closer
the samples are to one another, the greater the increase in the precision.

We should note that a GPR is appropriate not only because thesensor noise is Gaussian, but
because process by which concentrations of gas mix and vary is also often modeled as Gaussian
[3]. Modeled this way, we have the sum of two Gaussians, which is itself a Gaussian. More
complex models might include inference of prevailing winds as well, but it remains to be seen
if these complications are in fact necessary.

Gaussian process regression is a kernel method, and as such, shares many similarities with
other kernel methods such as support vector machines (SVM). It is beyond the scope of this paper
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to describe the mathematics of GPR. Depending on the kernel, GPRcan be as computationally
efficient as SVM [4].

V. Learning curves

Fig. 3. Simulation of signal variance
at apoint when samples from differ-
ent nearby sensors are also utilized
vs. the number of nearby sensors.
Variance is shown for two dimen-
sional and three dimensional coordi-
nates. For comparison, the variance
is show for the case in which all of
the sensors sample at the same point
in space, as in Figure 2(c).

The amount that the precision of the system increases
depends on the density of sampling. As the density of
sampling increases, so does the precision.

To quantify this increase in precision for a given
algorithm, it is typical to consider the “learning curve”
of the algorithm. The learning curve shows the deviation
of the true values of samples from the inferred function
as the number of training examples increases for a given
area. Sollich [5] provides some reasonably tight analytical
bounds on the learning curves for GPR. In the future
we will present an analysis of the learning curves under
various model assumptions.

In Figure 3, we see simulation results in which the
variance of the signal at a point decreases when nearby
sensor’s readings are also taken into account. In this
simulation, we use a standard radial basis kernel, and the
sensors are uniformly distributed within twice the scale
of the kernel. This means that many of the points will
be relatively far away from the point of interest, and
will not contribute significantly to reducing the variance.
Nonetheless, we can see that as the density near the point
of interest increases, the variance decreases.

VI. Future work
This paper begins to explore one way in which mobility in sensors can be exploited to increase
the usefulness and (in this case) precision of the sensing system. Although it examines super-
sampling under (mostly) ideal situations, many questions remain to be answered. How does
miscalibration impact these results? How do deviations from the Gaussian noise model impact the
learning curves of the algorithms? How accurately can the system parameters be calibrated, and
how does that impact precision? Is the (approximated) radial basis kernel the most appropriate
covariance function? How should increased sample density be traded off with sampling in under-
sampled locations, give limited resources to transmit samples?

Although we have also made some initial theoretical progress in automatically calibrating the
bias of sensors in the sensing system using Gaussian process models [6], many questions also
remain in this area. How does the automatic calibration hold up with a large, real data set. What
is rate of drift of the calibration of the sensors? How much should we trade off calibrating vs.
super-sampling? How can we infer the gain error of sensors?
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Another significant obstacle to ubiquitous and personal sensing using mobile phones is
obstruction of the airflow to the sensor (i.e. because the phone is in the user’s pocket or
purse). How can we detect this situation? Can it be compensated for, or do we need to discard
samples taken in such a situation? In a related question, how can we detect indoor vs. outdoor
environments. We have done some promising initial experiments using the microphone of the
phone to classify the user’s environment based on ambient noise, but these efforts need to be
fleshed out.

Finally, many issues remain surround the end applications of the data. Can users be guided
to safety in an emergency based on their position and the inferred position of a plume? How
should data be visualized? How can it be anonymized while remaining sufficiently useful to
various types of end users?

VII. Conclusion
Although many questions remain to be answered before we can build a working sensor system
based on sensors integrated into mobile phones, we are encouraged by these results. We believe
that mobile sensing has the potential to provide the platform for building the largest scientific
instrument ever made: one with a dynamic range wide enough to construct an accurate image
of the impact that humans have on their environment at a societal scale while also being able to
examine an individual’s exposure to a specific element at a specific place and time. Until now,
no sensing system has been able to do this, and we believe that the potential benefits to society
are enormous.
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