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Preface 
 

 

     Sensing is going mobile and people-centric. Sensors for activity recognition 
and GPS for location are now being shipped in millions of top end mobile 
phones. This complements other sensors already on mobile phones such as 
high-quality cameras and microphones. At the same time we are seeing sensors 
installed in urban environments in support of more classic environmental sensing 
applications, such as, real-time feeds for air-quality, pollutants, weather 
conditions, and congestion conditions around the city. Collaborative data 
gathering of sensed data for people by people, facilitated by sensing systems 
comprised of everyday mobile devices and their interaction with static sensor 
webs, present a new frontier at the intersection between pervasive computing 
and sensor networking. 

     Welcome to the Workshop on Urban, Community, and Social Applications of 
Networked Sensing Systems (UrbanSense).  This workshop is the third in a 
series of meetings held at SenSys over last few years. 

     The first workshop in 2006 dealt with the concept of the world sensor web and 
the second at SenSys 2007 focused on sensing on everyday mobile phones in 
support of participatory research. 

     This workshop promotes exchange among sensing system researchers 
involved in areas, such as, mobile sensing, people-centric and participatory 
sensing, urban sensing, public health, community development, and cultural 
expression. It focuses on how mobile phones and other everyday devices can be 
employed as network-connected, location-aware, human-in-the-loop sensors that 
enable data collection, geo-tagged documentation, mapping, modeling, and other 
case-making capabilities. 

     This year's meeting focuses on four topic areas: (1) Participatory sensing; (2) 
Emerging applications; (3) Sensing and localization; and (4) Sensing and 
measurement.  The program comprises 11 papers presented in the form of  four 
panels to encourage discussion of the ideas, challenges and technical issues 
presented by the speakers. 

     The program also includes an invited panel organized and chaired by Frank 
Bentley (Motorola) on "Applications of sensor-enabled mobile devices - how your 
phone can be location-aware, keep you fit, and save your life".                 
Panelists include Rahul Nair (Yahoo!), Pedja Klasnja (Intel Research/UW) and 
Tim Bergin (Motorola). We would like to thank Frank for putting this exciting 
panel together. 
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     We would also like to thank the technical program committee for their hard 
work in putting the program together: 

Frank Bentley, Motorola            
Assaf Biderman, MIT               
Péter Boda, Nokia Research                  
Gaetano Borriello, University of Washington                 
Andrew Campbell, Dartmouth College            
Hae Don Chon, Samsung                   
Landon Cox, Duke University                 
Deborah Estrin, UCLA            
Lama Nachman, Intel Research          
Tapan Parikh, UC Berkeley             
Matt Welsh, Harvard University           
Sean White, Columbia University            
Feng Zhao, Microsoft Research 

     We are grateful to Emiliano Miluzzo (Dartmouth College) who managed the 
workshop webpage where you will find the papers and slides. Emiliano also put 
the proceedings together. 

We look forward to an informative and productive meeting. 

Andrew Campbell                  
Deborah Estrin 

Raleigh, North Carolina, USA               
November 4, 2008 
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Evaluating Participation and Performance in
Participatory Sensing

Sasank Reddy, Katie Shilton, Jeff Burke, Deborah Estrin, Mark Hansen, Mani Srivastava
Center for Embedded Networked Sensing, University of California, Los Angeles (UCLA)

Email: {sasank, kshilton, jburke, mbs}@ucla.edu, destrin@cs.ucla.edu, cocteau@stat.ucla.edu

Abstract

Because participatory sensing – targeted campaigns where people harness mobile phones as tools for data

collection – involves large and distributed groups of people, participatory sensing systems benefit from tools to

measure and evaluate the contributions of individual participants. This paper develops a set of metrics to help

participatory sensing organizers determine individual participants’ fit with any given sensing project, and describes

experiments evaluating the resulting reputation system.

I. INTRODUCTION

The rapid adoption of mobile phones over the last decade and an increasing ability to capture, classify, and

transmit a wide variety of data (image, audio, and location) have enabled a new sensing paradigm – participatory

urban sensing – where humans carrying mobile phones act as, and contribute to, sensing systems [1], [2], [3]. In this

paper, we discuss an important factor in participatory sensing systems: measurement and evaluation of participation

and performance during sensing projects.

In participatory sensing, mobile phone-based data gathering is coordinated across a potentially large number

of participants over wide spans of space and time. We draw from three pilot projects to illustrate participatory

sensing and describe the unique challenges to measurement and evaluation provided by “campaigns”: distributed

and targeted efforts to collect data. Project Budburst [4], Personal Environmental Impact Report (PEIR) [5], and

Walkability all situate “humans in the loop”, but have critical differences in their goals and challenges (Table I).

Campaign Goal Data Collection Evaluation Challenges
Project
Budburst

Gather data about the flowering of
native plants to study climate change

Mobile phones upload time-stamped,
geo-tagged plant photos

Ensuring data quality to meet scien-
tific standards, including photo reso-
lution and reliable capture of events
of interest

PEIR Enable individuals to collect data
about environmental impact and expo-
sure

GPS traces create estimates of carbon
emissions/pollution exposure

Continual and long-term participation
yields most meaningful results

Walkability Gather data about neighborhood side-
walk hazards

Mobile phones upload geo-tagged
photos of cracks, gaps, and impedi-
ments

Systematic coverage and verification
to make a strong case to city councils

TABLE I
GOAL, DATA COLLECTION, AND EVALUATION CHALLENGES ASSOCIATED WITH CAMPAIGNS.

These pilots have raised complex problems of reputation and reliability. “Human in the loop” sensing relies

upon community expertise, drawing upon mass contributions in much the same way as web-based systems such

as Wikipedia and Slashdot [6]. But these projects also demand data quality that meets criteria set by scientists or

legislators. Participatory sensing reputation metrics must therefore incorporate expertise, data quality, credibility,

and certainty, while encouraging participation and development of expertise among amateur volunteers.

To address this challenge, we have developed two indexes for measuring participation and expertise among

campaign participants: cross-campaign and campaign-specific measurements. Cross-campaign metrics are résumé-

like measures of previous experience and commitment. These include number of previous campaigns undertaken and

the success of a participant in previous campaigns. Experience metrics can play a key role alongside other factors
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such as sensing modality, coverage, and cost in enabling campaign monitoring services to select participants who

can achieve the highest effectiveness for a particular data collection initiative. Tracking participation in this way is

not new; it has been employed widely by Internet businesses and services [7]. Systems that provide a marketplace

for commissioned work, such as Amazon Mechanical Turk and GURU.com, keep detailed statistics tracking the

performance of requesters and workers [8], [9]. Systems for question answering, such as Amazon Askville and

Yahoo Answers, use credits to track a participant’s performance [10], [11], and auctioning systems such as E-Bay

have transaction ratings to help evaluate whether a particular participant is trustworthy [7].

Campaign-specific metrics provide project organizers with something existing systems do not offer: evaluation

of participation during the deployment of a campaign over weeks or months. Instead of the résumé-like measures

used by existing reputation systems, we compare campaign-specific metrics to a project review. As a campaign

progresses, a “watchdog” module can observe quality and utility of a participant’s contribution relative to campaign

needs. The module can then send alerts and recommendations to participants, dynamically change incentives for

existing participants, and recruit new participants to the campaign.

II. CROSS-CAMPAIGN PARTICIPATION: THE RÉSUMÉ

Our work builds on ideas of monitoring participant behavior and provides metrics to evaluate participation and

performance in sensing campaigns. To suggest metrics useful to filter or rank potential participants based on past

performance, we consider the requirements volunteers must meet before joining a campaign and how the metrics

that make up these requirements are delineated. Cross-campaign metrics can relate to either campaign participation

or campaign performance.

A. Campaign Participation

Participation requirements allow a campaign organizer to recruit participants that have a certain level of experience

or have been active recently. Participation metrics include: a) number of campaigns volunteered for, b) number

of campaigns accepted for, c) number of campaigns participated in, and d) number of campaigns abandoned.

Individual metrics can be associated with other information about a campaign, such as size, lifetime, and type of

sensing required. Examples of requirements could include: participants who have been accepted for image-sensing

campaigns in the last 6 months, have participated in a certain number of location-sensing campaigns, or have less

than 10% abandonment rate.

B. Campaign Performance

To create metrics that represent a participant’s performance, campaign organizers need a language to express the

campaign contributions they require. A successful contribution can be defined according to a number of qualities,

including: what sensor type should be used and what modalities employed; the spatial or temporal context in which

the sample is taken; and timeliness, relevance and quality of the sampled data. Timeliness represents the latency

between when a phenomenon is sampled (or occurs) and when it is available to a data processing module. Relevancy

indicates how well the sample describes the phenomenon of interest (“did the participant photograph a flower?”)

Quality describes the ability of the system to determine a particular feature in a sample (“can the system detect a

sidewalk hazard in this photograph?”) Quality includes the probability of detection, probability of a false positive, or

probability of a false negative. Campaign performance may also include metrics that describe the responsiveness of

a participant, or similarly, the amount of responsibility taken by a participant. Campaign organizers might consider

how frequently a participant checks in with the system, whether a participant uploads regularly, or whether the

participant takes privacy precautions with their data such as blurring third party images in photographs. Because

the meaning and importance of each of these variables can vary based upon the needs of the campaign, it will be

important for campaign organizers to have control over setting definitions and levels of cross-campaign metrics.

Using the above metrics, campaign organizers can define a useful campaign entry and set benchmarks that

indicate participant success. Performance benchmarks can be absolute, set limits for performance categories, or

relative, based on performance of other members. Also, the scales can be translated into user-friendly forms for

querying such as the 5-star system popular on many Internet platforms [12]. As future work, we will consider

enabling participants to set their own benchmarks for success.
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III. CAMPAIGN-SPECIFIC PARTICIPATION: THE PROJECT REVIEW

Analysis of pilot campaign participation has shown that it is important to monitor participant contributions while

a campaign is running, as well. Participants may realize during the course of a campaign that data collection does

not fit their schedule or interests, or organizers may discover that participants are not keeping up with their data

collection duties. Campaign-specific monitoring enables a monitoring service to adapt the participant list, coordinate

reliable contributors to collect or verify information, or adapt feedback and incentive mechanisms.

To generate campaign-specific participation and performance measures, campaign organizers could choose several

mechanisms. Campaigns could incorporate a “calibration” phase paired with reoccurring “check-ups” where experts

or campaign organizers obtain ground truth information for a particular area of interest. Participants would then

be coordinated to monitor the same area. The observations made by participants could then be compared to the

ground truth to obtain a reliability measure. For campaigns where obtaining ground truth information is not practical

or possible, indirect “collective” observations made by participants can generate a reliability score. In this case,

geographic coverage overlaps between participants would be found, and reliability scores can be calculated by

measuring the similarity of observations in these areas. Evaluating participant reliability by comparing overlapping

results is similar to the social science practice of calculating interrater reliability: consistency among responses

when assigning values to subjective data [13].

We propose a mathematical model to represent campaign-specific performance, update it based on measures of

participant reliability, and translate it into a participant trust metric. Existing reputation systems used in applications

include: cumulative, where a user’s reputation ratings are summed; average, where the reputation score is computed

by averaging all scores; blurred, where a weighted sum is used to down weight old ratings; and adaptive, where

the current reputation score affects to what degree new observations make a difference [14].

The above mentioned reputation systems only capture stochastic uncertainty (due to randomness of the system).

We instead want a reputation system that captures both stochastic and epistemic uncertainty (due to lack of

knowledge about the randomness of the system) so we adopt the Beta distribution to model the reputation of

a participant. The distribution is indexed by two parameters, alpha and beta, which define the number of successful

and unsuccessful transactions that have occurred in the past. A participant’s reputation can be found by calculating

the expectation of the Beta distribution, E(alpha,beta) which is the stochastic uncertainty. The confidence factor is

the posterior probability given the actual expectation value lies within an acceptable level of error [15]. Prior to

any interaction, alpha and beta are set to 1, which results in a uniform distribution where all values are considered

equally likely. We refer the readers to [16] for a full description of the Beta distribution.

Beta plot generated for three participants (alpha, beta):  (2,10), (4,6), (20,5) with 
mean of (0.16), (0.40), (0.80) and confidence value of (0.67), (0.48), and (0.80) 
when 0.10 is used for the acceptable level of error. 

α = successful entries + 1E(α, β) =
α

α+ β β = unsuccessful entries + 1

f(p|α, β) = Γ(α+ β)
Γ(α)Γ(β)

pα−1(1− p)β−1

Fig. 1. Density of Beta functions for various types of participants.

Figure 1 shows the density of Beta function for different participants. The acceptable error level was defined as

0.1. By having more evidence for a certain hypothesis, as is the case with the participant with alpha of 20 and

beta of 5, the level of confidence is large, 0.80. A participant with only a few entries, alpha of 4 and beta of 6,

the confidence factor is significantly lower, 0.48. The Beta formulation for reputation affords us other features that

are useful in monitoring participants as well. For instance, an aging factor can be introduced to account for quality

variations over time by discounting past contributions as a campaign executes, and higher weights can be introduced

for contributions that are made in high priority contexts (discussed in Section IV) [12]. Also, contributions do not

have to be binary: ratings between 0 and 1 can be made by appealing to the Dirichlet process [17].
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IV. PRELIMINARY EVALUATION

Since we are in the preliminary stages of several campaigns, we focus on evaluating campaign-specific participa-

tion metrics using information gathered from pilot studies of Walkability, PEIR, and Project Budburst campaigns.

A. Walkability and Image Quality

To pilot the Walkability campaign, we asked 6 participants to walk the Westwood neighborhood of Los Angeles

and take geo-tagged images of sidewalk segments with visible damage such as cracks. The campaign ran for 2

weeks. Figure 2 shows an analysis of whether participants’ contributions were adequate to assess the state of the

sidewalk. Images deemed too blurry or dark by a human were considered inadequate. A sense of the epistemic

uncertainty helps analyze whether a given participant would be useful as a campaign continues. For example,

participant #1 has a high mean (likely to contribute adequate information) but our confidence in his ability is low

since the number of contributions he made is small. The confidence factor, however, for the other participants is

high because have contributed much more data. We can consequently be much more certain about the abilities of

the other participants. Note that we used an error level of .1 when calculating the epistemic uncertainty.

Participant #1 Participant #2 Participant #3 Participant #4 Participant #5 Participant #6

mean=0.75 
confidence=0.34

α = 3
β = 1

α = 39
β = 30

α = 30
β = 1

α = 54
β = 3

α = 98
β = 14

α = 38
β = 7

mean=0.57 
confidence=0.91

mean=0.97 
confidence=0.99

mean=0.95 
confidence=0.99

mean=0.88 
confidence=0.99

mean=0.84 
confidence=0.95

Fig. 2. Walkability pilot analysis showing the likelihood of contributing adequate contributions.

B. PEIR and Long-Term Participation

During the PEIR technical pilot campaign, participants were encouraged to contribute location traces as frequently

as possible to test the performance and accuracy of the system. Figure 3 shows the analysis of participation over

61 days for the 26 participants in the pilot. PEIR participants can be clustered into three types of users: consistent,

bursty, and sporadic. Consistent contributors contributed data in a dedicated manner throughout the campaign. Bursty

participants showed concentrated bursts of contribution, perhaps due to reminders sent to solicit participation. Spo-

radic participants were very inconsistent or even one-time contributors. By breaking up the campaign into intervals

and evaluating participants using the Beta distribution, we could cluster participants according to participation and

send feedback based on this information.

Days

P
ar

ti
ci

p
an

ts

Three types of participants exist: 
         -  consistent
         -  bursty
         -  sporadic  

Beta plot for two participants illustrating affect of “aging” factor of 0.8 after 61 days:

#9 #10 alpha = 4.69, beta = 2.31 
mean = 0.67, confidence = 0.42

alpha = 1.0, beta = 5.99 
mean = 0.14, confidence = 0.58

Participant #9

Participant #10

Contributed Did Not Contribute

Fig. 3. PEIR analysis showing long-term participant contributions and aging factor.
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A feature of the Beta distribution beneficial for long-running campaigns is the aging factor, which we demonstrate

by analyzing PEIR participants #9 and #10. Participants #9 and #10 contributed roughly similar amounts of data,

but did so during different periods of the campaign. Participant #9 contributed during the tail end of the campaign

while participant #10 was heavily involved during the beginning. By having a weight of .8 for the aging factor,

we see that participant #9 would be more likely than #10 to contribute data (thus giving #9 a higher mean) in

the immediate future. Incorporating an aging factor into the reputation mechanism indicates reliability over time,

important since campaigns with a long temporal duration may experience bursty participation.

C. Project Budburst and Reliability

For the Project Budburst pilot we recruited 11 participants. Because we did not have any prior measure of their

reputation as data collectors, we initiated a short calibration exercise. The campaign organizer documented flowering

plants using geo-tagged images along three specific routes. Participants then traversed the same routes looking for

flowering plants. Routes #1 and #2 were short and consisted of 15 and 7 flowering instances, respectively. Route

#3 was longer and had 23 instances of flowering. By comparing participant contributions to the calibration phase,

we can quickly identify highly reliable participants as well as ones who may required feedback to adjust their data

collection practices. For instance, by looking at the results from routes #1 and #2, we could predict which users

would be most effective in route #3. The participants who achieved mean of .88 and mean of .92 (with confidence

level greater than .90 when the acceptable error is .1) using the Beta distribution for the first two routes, contributed

samples that most closely matched the ground truth for route #3. On the other hand, the participants who performed

poorly, mean of .58 and .71, on the first two routes followed up with samples that were least consistent with the

ground truth. This illustrates that using the Beta distribution with a calibration phase could effectively provide an

initial measure of a participant reliability useful for adaptive recruitment or feedback.

V. DISCUSSION AND FUTURE WORK

Both the challenge and the promise of participatory sensing emerge from involving people in the sensing process.

The ultimate “smart sensors,” people can make decisions that increase data accuracy, but they also vary according

to participation and performance. This paper presents a set of participation and reputation metrics along with a

model to help organizers of sensing campaigns determine the reputation and fit of potential participants and whether

adjustments are needed during campaign execution. This work is just a first exploration; further study will take

place as we incorporate an adaptive participant recruitment system. We will explore how best to communicate

reputation ratings, provide actionable feedback to improve a participant’s reputation, and determine whether the

metrics can become incentives. Another area for future work is exploration of how attributes used in recruitment,

such as social network membership or external credentials, may affect reputation measures.
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Abstract

In economics, price dispersion refers to the price difference of a homogeneous good across different vendors. 
According to [1] “The empirical evidence suggests that price dispersion in both online and offline markets is sizeable, 
pervasive, and persistent.”  Not surprisingly, there exist several popular web commerce sites such as Froogle that 
enable users to track consumer pricing information in online markets. In this paper, we present and explore our vision 
that participatory sensing can be employed in this new application domain to track price dispersion in homogeneous 
consumer goods even in offline markets. We discuss two proof-of-concept participatory mobile camera-phone sensing 
systems that we have built: (1) automating fuel price collection, and (2) semi-automated scanning of receipts.

I. INTRODUCTION

Price dispersion of homogeneous goods is a fact of life [1]. We emphasize homogeneity because if two goods 
are not homogeneous, such as televisions of different brands, then there is a quality difference which makes them 
hard to compare quantitatively.  We have encountered myriad real life examples of price dispersion. For example, 
the following homogeneous goods were sold at different stores at fairly different prices at the same time in June 
2008. We observed a $10 price difference for multivitamins (a $30 product) between Costco and RiteAid stores, 
and nearly a $200 price difference for HDTVs (a $2000 product) between Circuit City and Best Buy. Online, the 
quoted air fare for the same flight was $600 higher at Expedia than Lufthansa $2600 at the same instant of time. 

Price dispersion is attributed to several causes. A seminal article by Varian [2] suggests that price dispersion 
might be a deliberate marketing ploy by retailers to entice consumers into exploring their choices. Nevertheless, a 
major cause is the consumer search cost incurred in collecting pricing information from competing retailers, 
including the opportunity cost in time in acquiring this information [Baye06]. Price dispersion remains widely 
prevalent on the Internet (15-17%) [3], although studies have speculated that the low Internet search cost, where
alternate retailers are often just a mouse click away, will eliminate price dispersion [4]. Not surprisingly, 
numerous web commerce sites such as Shopzilla1 and Amazon2 try to remedy this situation in online markets by 
providing a clearinghouse of price information for a homogeneous good for different e-retailers. 

There are compelling reasons for creating such a clearinghouse of up-to-date product pricing information, even 
for offline markets of brick and mortar stores. It could create arbitrage opportunities, wherein an enterprising 
person can leverage the price difference for profit. The availability of real-time price dispersion information can 
empower consumers to more effectively negotiate prices [5]. In online markets, studies cited by [1] show that 
savvy consumers who use on-line price comparison sites save up to 16% in consumer electronics purchases.

Numerous consumer communities are already tracking price dispersion manually. A group of Hong Kong 

1 http://shopzilla.com/
2 http://www.amazon.com/
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housewives divide themselves into teams to manually copy prices of selected staple grocery items in major 
supermarkets and local grocery stores, and upload the prices to a website, prompting a major Chinese newspaper 
to advertise weekly grocery prices across different stores on its website3. In several countries, petrol price 
information is collected manually, by volunteers or employees of websites such as gaspricewatch4 (USA) and 
motormouth5 (Australia). Manual price information collection is cumbersome, error-prone and not up-to-date.

Our vision is to apply participatory sensing to share consumer pricing information and reduce the search costs 
of tracking price dispersion in offline markets. We are motivated by the success of the Wikipedia, Youtube and 
BitTorrent applications that are driven by altruistic user participation. In this paper, we explore two participatory 
camera phone sensing systems: (1) automating fuel price collection, and (2) semi-automated scanning of receipts.

II. RELATED WORK

Participatory Sensing enables collection and dissemination of environmental sensory data by ordinary citizens,
through devices such as mobile phones, without requiring any pre-installed infrastructure [6]. Researchers have 
recognized its potential and applied it in many domains, including but not limited to, health (DietSense) [7], 
intelligent transportation (TrafficSense) [8] and air-quality monitoring [9]; however, to the best of our knowledge, 
participatory sensing has not been applied in commerce. As in our proof-of-concept systems, DietSense and 
TrafficSense use camera phones. Researchers are also developing geo-mapped clearinghouses such as SensorMap6

to simplify sensor data sharing. Our goal is to extend this idea to pricing information collected by image sensors.
The use of mobile phones to enable micro-transactions in commerce has burgeoned over the past few years, 

particularly in the developing world. It is estimated that Indian farmers get only about 20-25% of the final 
purchase price of their agricultural produce (about 40-50% for farmers in USA), while most of the rest goes to 
middlemen. The recently introduced Reuters Market Light services provides farmers with up-to-date information 
on crop prices and related agricultural news via SMS messages to their mobile phones [10]. Key distinctions 
between this work and our vision are that we focus on empowering the consumer community, and focus not only 
on modes of disseminating pricing information to users, but also modes of collecting information from consumers. 
Parikh has used camera phones to scan loan applications for supporting rural microfinance in the CAM system 
[11]. As in CAM, we use the camera phone to scan receipts, albeit to support participatory data collection.

III. CHALLENGES

Significant challenges remain to be addressed.  Data gathered from camera phones is not in a consistent format, 
making it hard to aggregate pricing information across different retailers. In contrast, aggregation on systems such 
as Shopzilla is much easier, as they operate over Web-XML data with well defined schemas. Moreover, the sheer 
numbers of goods and consumers make it difficult to collect information in a single database. Because of this, 
information clearinghouses such as gaspricewatch tend to focus on a single good. Recent database research, such 
as COLR-Tree is exploring scalable indexing for SensorMap [12]. The computer vision aspects of extracting price 
information are also non trivial. Another concern is the optimal positioning of camera phones for image capture, 
making automation difficult. In our proof-of-concept systems, we exploit the availability of GPS (Global 
Positioning System) and GIS (Geographical Information System) software to simplify image processing.

Other challenges seem inherent to all participatory sensing systems, whose success hinges on achieving high
user participation. How do we promote collection and sharing of pricing information? Two types of incentives are 
possible here. The first incentive is to lower the technical and monetary barrier for participation. The designer 
must make the system easy to use, ensuring that it takes minimal effort and very low monetary cost to share data. 

3 http://price.mingpao.com/
4 http://www.gaspricewatch.com
5 http://motormouth.com.au/default_nf.aspx
6 http://atom.research.microsoft.com/sensormap
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The system should be automated as far as possible to reduce reluctance to participation. Free text messaging or 
WiFi capability in some phones could eliminate the monetary cost of sharing data. We have investigated these in 
PetrolWatch, the fuel price collection application. It is possible to provide the consumer an information reward 
proportional to her contribution, as has been explored in systems like BitTorrent.

The final concerns are security, privacy and data reliability. How does a user upload pricing information 
without exposing her shopping behavior? Here, solutions must safeguard not only the user’s location privacy but 
also her shopping pattern privacy.  There is a monetary value for knowing what products a consumer buys. If 
anonymity is not essential, users can be provided the choice to contribute data anonymously or not. It is also 
critical to ensure the integrity and reliability of the contributed pricing data, ensuring that no bogus data is 
contributed. This is difficult, because data integrity is at odds with privacy. We expect to build upon the solutions 
being developed by researchers in this community to address these challenges in the long term.

IV. PROOF OF CONCEPT SYSTEMS

We have built two systems, PetrolWatch [13] and MobiShop (demonstrated at [14]) that process and deliver 
product pricing information from street-side shops or gas stations to potential buyers, on their mobile camera 
phones, and have similar client-server architectures (see Fig.1). They can also serve as an effective indirect 
advertising medium for gas stations or shops. They operate in two modes: (i) price collection and (ii) user query.

Figure 1: Mobishop System Architecture

A. PetrolWatch: Automated Fuel Price Collection

The goal of PetrolWatch (see Fig. 3) is to automate collection of fuel prices, by triggering the mobile phones of 
contributing users to photograph the roadside fuel price boards when they approach service stations. A central 
server implements computer vision algorithms for processing images and extracting fuel prices. To deal with a 
non-structured environment, and to reduce computer vision complexity, it relies on the GIS database and GPS 
location to know the service station brand and uses the fact that each brand uses a specific color for its fuel price 
board.  The meta-data (location coordinates, service station brand and time) are extracted and stored separately. 

The images and fuel brand information are passed on to the image processing engine. The first step detects the 
existence of a fuel price board. For each service station brand, we employ a tailored color thresholding that can
capture regions within the images, having a color scheme similar to the fuel brand price board. In certain 
situations, surrounding objects in the image may have colors resembling the board, e.g.: the blue sky may be 
similar to the Mobil fuel price board. In this case, we use post-processing techniques to narrow the search. We use 
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the price board dimensions to exclude some of the candidate regions selected by color thresholding. This is further 
refined by comparing the color histogram of all candidate regions with that of a sample fuel price board image. 
The detection concludes by identifying the precise board location in the image. The image is cropped to contain
only the board, and normalized to standard size and resolution. We convert the color image to binary and use
connected component labeling to extract the individual numeral characters. A Feedforward Backpropagation 
Neural Network algorithm is used to classify the price numeral characters. The extracted prices are stored in a 
database, linked to a GIS road network database populated with service station locations, consistent with the GIS 
database installed on the phones. The server updates fuel prices of the appropriate station in the database if the 
current image has a newer timestamp. The past station fuel price history is also recorded to analyze pricing trends.

     

Figure 2: Mobishop screen shots and OCR
                           

Figure 3: PetrolWatch screen shots.

B. Mobishop: Semi-automated Scanning of Receipts

To contribute pricing information in Mobishop (see Fig. 2), the user photographs the store receipt with his 
camera phone (more efficient than photographing product tags), which lists the products and their prices. 
MobiShop implements Optical Character Recognition (OCR) on the mobile device to extract the pricing 
information from the image. The user is given an option to edit the extracted text to fix any mistakes, and also to 
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allow her to delete personal information such as credit card details. The products and prices are uploaded with the 
GPS coordinates of the user and the time of purchase to the central server using a TCP connection over built-in 
GSM/GPRS/3G/HSDPA or 802.11 interfaces. The server collates user inputs and maintains an updated repository 
of product prices at different stores. This database is interfaced to a GIS street map populated with store locations. 

The MobiShop client has been primarily implemented in Java ME to ensure portability across devices on a 
Nokia N95 8GB phone. We used the native Symbian OS 9.2 OCR engine, which can accurately detect about 60% 
of item prices on the receipt. A simple GUI is provided for user input. User location is determined by querying the 
GPS receiver. The client interfaces with an external GIS library, J2MEMap7 so store locations can be highlighted 
on a street map for navigation.  The server program is written in Java and is executed as a daemon on an always-
on workstation. In future work, we intend to improve the OCR accuracy, and enable self-registration of stores.

V. CONCLUSION

We explored participatory camera phone sensing for tracking price dispersion in offline markets in two systems 
– PetrolWatch and Mobishop. They address the challenge of collecting offline non-structured information. This 
system model could be extended to help users keep track of their shopping habits, in receiving frequent-buyer 
promotions, and track price dispersion elsewhere, like rates for various city parking structures.
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Abstract 
 

Social Tapestries views participatory sensing as the principal supporting technology to enable grass-roots groups 
and communities to track and act on information about their local environment. In this article, we report on our 
experiences with a low-cost open source hardware and software platform, which we specifically developed for this 
task. We describe how we employed this platform to support community workshops and art, and highlight the 
lessons learnt through our involvement with urban communities in London, UK. We conclude by identifying the 
main ingredients for the development of a successful strategy for the use of this and other similar platforms in 
supporting environmental sustainability through sustainable communities.  

 

I. INTRODUCTION 

     Public authoring is the mapping and sharing of local knowledge using pervasive computing technology to 
create and support relationships beyond established social and cultural boundaries and the development of new 
practices around place, identity and community. Social Tapestries (ST) is a programme of research into the 
potential costs and benefits of public authoring to communities and individuals [1, 5]. Within ST, several projects 
have focused specifically on how public authoring can support grassroots participatory sensing activities with a 
view to allow local urban communities to take action towards environmental sustainability. Here, we present three 
such projects, namely Feral Robotic Public Authoring, Snout and Everyday Archaeology, which explore 
complementary ways to achieve this aim. All projects share a commitment to the principal premise of ST that is, to 
contribute to an alternative experience commons where people are presented with the opportunity to be agents, 
actors and authors. They also make use the same open-source hardware and software participatory-sensing 
platform, which we specifically developed to support these activities. We describe the development of the platform 
in parallel to our discussion of our developing understanding of public authoring in this context. 

II. PUBLIC PARTICIPATION AND SOCIAL TAPESTRIES 

Public authoring takes the view that true daily life is richer and more complex than consumption of services, 
products and media, relying as much on social networks, personal experiences and chance interactions and 
connections. Pervasive computing applications should attempt to reflect this richness and complexity. At the core 
of such diverse everyday activities lies social knowledge, a term used in ST to refer to the passing communications 
that are the glue of society and communities: the everyday and essential sharing of information, stories, knowledge 
and memories with friends, family, neighbours and strangers.  

The practice of public authoring can offer opportunities to individuals and groups to intervene in situations that 
have previously been tightly controlled. For example, in the ST Eyes on the Street project, residents of the 
Havelock Estate in Ealing, London, are engaged in public authoring with a view to employ local knowledge to 
support the operation of a tenant organisation that aims to take over the management of their estate. In this case, we 
have found that public authoring may provide insights not otherwise available by creating a record of living that 
far exceeds what is possible through centralized estate-management services. Such activities should not necessarily 
be seen as threats to established authoritative sources of knowledge but rather as people’s desire to participate.  
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This desire for participation in public life stemming from the grassroots is particularly attractive to ST. As a 
result, following on Eyes on the Street and a subsequent project with St Marks Housing Cooperative in West 
London, it became evident that an investigation was required into how participation by local communities in data 
collection through sensing in their immediate environment, can enable them to become actively involved in 
promoting sustainable environmental practices. Note that he concept of participatory sensing has been used 
elsewhere as a model for sensor networks [2]. In our work, we use the term giving emphasis on its social, rather 
that its technological meaning. 

Many of the explorations within Social Tapestries are supported by the Urban Tapestries software platform [1], 
which has been specifically designed to enable public authoring. In UT, users as authors go about their everyday 
activities as they usually would, but whenever they wish to add new content they do so using their mobile phone. 
This task is facilitated by the UT client that allows them to annotate a place with media including text, sound, 
images or video. Authors can link such pockets of content together into threads with a specific theme. Threads and 
pockets published on UT weave together into an information tapestry overlaid on the urban structure. Users as 
consumers can search for, browse and access content published by other participants, also using the UT client 
application on their mobile phone. For our investigation of participatory sensing for environmental sustainability 
we extended UT with new information harvesting, management and visualization capabilities, and developed a 
new client platform specifically for sensing. 

III. PROTOTYPE ONE: ROBOTIC FERAL PUBLIC AUTHORING 

Natalie Jeremijenko in her Feral Robotic Dogs project proposed ways to reconfigure toy robot-pets that became 
popular in the early 2000s, with a variety of low-cost chemical sensors that can sense, record and in some cases 
trace environmental pollution [3]. The aim of doing so is to create an opportunity for public discourse by providing 
the tools to construct open-ended interpretations of the evidence at hand. Such experiments open up new 
possibilities for exploring local environments to detect the presence of many kinds of emissions and map them 
using the UT toolset. A large variety of low-cost sensors are readily available including carbon monoxide and 
dioxide, solvent vapours, electro-magnetic emissions (for example, those coming from mobile phone masts, 
electricity generators and so forth), and light and noise pollution. Adding the sensor readings to UT makes evident 
the relationships between the physical environment and communal places. It enables people to feel they can learn 
about their environment and have the evidence to do something about it. By linking robot building and mapping 
workshops into traditional community events for example, fetes and local festivals, a wide range of people can 
become involved in gathering and sharing knowledge about their environment. 

The Feral Robotic Public Authoring (RFPA) project takes exactly this point of view. To achieve this goal, we 
augmented the initial Feral Dog design with wireless networking, location and advanced environmental sensing 
capability, and linking it to the internet and the UT platform. Our priority is to develop a low-cost platform that can 
be built easily out of widely available commodity components and with very limited technological resources and 
skills. Out intention is that all software and designs would become available on the web for everyone to freely re-
use, build or modify. 

Our design implemented Gumstix, an open-source small and inexpensive computer running the Linux operating 
system. We extended the core design with cooling and power management sub-systems, which were critical for the 
consistent operation of the device, an external GPS receiver connected over Bluetooth, and customised its Analog-
to-Digital Converter for use with a radio controlled car. And of course, we build in sensing capability using a 
variety of inexpensive sensors typically used in fire and carbon monoxide alarms, and home and car ventilation 
systems [6]. The full designs including bill of materials, assembly instructions for the enclosure and mounting, 
Gerber files for production of the printed circuit board, sensor calibration procedure and the software repository are 
available online via http://socialtapestries.net/feralrobots/ 
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Fig. 1   (i.) The original Feral Robot (left) followed by the networked and location aware version developed for RFPA . (ii.) A 
close-up of the sensor modules at the front of the RFPA remotely controlled car. (iii.) The complete RFPA design with sensors, 
GPS, processing and networking unit assembled and operational during the London Fields trial. 

IV. COMMUNITY MAPPING WORKSHOPS WITH RFPA 

London Fields is a popular park in Hackney, East London, and an important resource for local communities in a 
built up area. The park is used by local people for a variety of activities: as a space to play and socialise in, for 
championship cricket and football games, dog walking, and as a popular walking and cycle route. In its relatively 
long history, London Fields and the area around it have adapted to accommodate the differing needs of the 
surrounding population.  

Air quality in London is monitored on an hourly basis by the London Air Quality Network (LAQN), through an 
extensive network of observation stations in fixed locations across its Boroughs. LAQN is an important resource 
but considering that Hackney itself only has one station for the entire borough there is clearly ample opportunity to 
examine air quality at a more localized resolution. Yet, the collection of this kind of data by non-experts is not 
necessarily useful, and some would argue that such activities would lack scientific rigour and would thus not be 
comprehensive or authoritative. Data collected through the RFPA devices can provide a snapshot of pollution in a 
specific place at a specific time and is not designed to replace or replicate LAQN. Instead, it aims to trigger an 
open dialogue about how pollutant sensing technology placed at a grassroots level can function and its potential 
applications for community action and interaction. 

Community pollution mapping workshops were organised in collaboration with SPACE Media Arts, a local arts 
and education charity, which allowed us to access their local community networks.  We found is that grassroots 
pollution mapping is not necessarily about producing accurate scientific data. Instead, it is a tool to highlight 
concerns, to map knowledge, to enable involvement in the data collection process thus reinforcing perceptions of 
the area, and provide the focus for communities to come together. As one workshop participant remarked: “we 
have come to accept air pollution because we are culturally habituated in it -- that’s got to change and if this 
doesn’t happen at a grassroots level with tools that we can handle ourselves, governments will not shift because 
they are in with the big corporations.”  

Nevertheless, not all workshop participants took the same view, and others expressed the opinion that ordinary 
people do not have any control over their local environment. For example, vehicle emissions are the major cause of 
air pollutants in London and in many cases they are due to pass-through traffic, about which local people have 
little power to intervene. This point of view can lead to passivity and resigned acceptance of the situation as 
expressed by one participant who said that “the more I think about it, the less I want to have any access to any data 
about air pollution in my locality, or information about this park. I don’t have a garden, I have a kid, and I’ll 
always use it.” 

In addition to views of the here and now, community mapping workshops prompted participants to reminisce 
about the history of the Fields, highlighting past activities in the area which could have left an environmental 
footprint. This type of local knowledge is invaluable and can help locate pollution hotspots that would otherwise 
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require an extensive survey. An expert coming from the outside would not have access to this knowledge without 
considerable resources for research. 

A second series of RFPA workshops was run in collaboration with the Jenny Hammond School in Waltham 
Forest, also in East London. In July 2006, a week-long workshop with 30 students aged between nine and 10 years 
old involved several activities including extensive use of the RFPA platform to gather evidence about the world 
around them. These activities were linked to specific modules within the Key Stage 2 national curriculum, in 
particular transport, architecture and climate, and allowed the students to gradually develop associations and 
connections between these areas and how they all fit within the environmental sustainability agenda.    

V. DEVELOPING THE PLATFORM 

RFPA allowed us to experiment with participatory sensing and gain experience in what works both from a 
technical and a community perspective:  

Embedded interaction. The RFPA cars, although appealing (especially to younger and male users) provided 
limited opportunities for interaction beside the remote control. While running, they collect data silently and relay it 
to the UT server for further processing without any perceptible indication that this has occurred. Their operators 
are only able to tell if the different system components function correctly due to several LED indicators, but are 
unable to get feedback about the current detected levels of air pollution for example.  

Media scavenging. UT was designed as a stand-alone software system well before the emergence of Web 2.0 
and due to our resource limitations in supporting the software development process over an extended period of 
time, it lacked features that users identified as important. As a result, we adopted an approach based on scavenging 
functionality that could be mashed up with UT to provide the missing features, such as social networking as 
implemented by Ning.com.  

Everyday archaeology. Since we formulated the participatory sensing approach, we have seen its emphasis shift 
from pollution mapping to what we now describe as everyday archaeology. In doing this, we shifted our focus 
away from the specifics of data collection and focus on the process of excavating information about the local 
environment and its relationship to communities.   

VI. PROTOTYPE TWO: SNOUT 

Our next investigation of participatory sensing was through the development of a community art project in 
partnership with the International Institute of Visual Arts (inIVA). We consider community art to be an appropriate 
approach for community development because it reflects the main principles of participatory sensing: it is rooted in 
a shared sense of place, tradition and spirit; it is as much about the process of involving people in the making of the 
work as the finished object itself; and it is situated in public, accessible and resonant places, geared to a specific 
audience and a specific time. It seems that this point of view can offer new opportunities for the development of a 
community around environmental sustainability by providing both the practical and the conceptual framework 
required. Indeed, community art and grassroots activism are about knowledge and building social capital in the 
form of the grassroots networks that enable people to move information and ideas to a broader audience and make 
change happen. 

The specific performance developed for Snout explored relationships between the body, community and the 
environment. The concept of the performance was developed around the Carnival with two typical costumes build 
and instrumented with participatory sensing capabilities. The reason for this choice was that carnival is a time of 
suspension of the normal activities of everyday life – a time when social hierarchies are inverted and when 
everyone is equal. This view is highly compatible with the Snout objective to invite participation. The characters 
selected were Mr Punch and the Plague Doctor (Figure 2).  
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Fig. 2 Snapshots from the Snout performance. 

VII. LESSONS LEARNT THROUGH SNOUT 

Snout enabled us to take further our ideas about participatory sensing, especially in identifying effective ways to 
facilitate the development of grassroots communities. 

Inspiration rather than prescription. We initially considered our open-source platform as the main ingredient of 
any community project around participatory sensing. However, it turned out that the complexity of the hardware 
construction aspect in particular caused significant difficulties to the general user, despite the fact that is 
considerably more accessible than any other alternative available.   

Multiple ways to access information. A single web interface as the only means to interact with the captured data 
appeared to be far too limiting and unable to address the needs and concerns of all the users involved. Instead, it 
was necessary to provide alternatives that could address the specifics of the situation in which access to the data is 
required as well as the skills of the particular user.   

Access also via low-tech materials. Within the context of multiple modalities of access to the captured data, it is 
especially important to note approaches that do not employing information or communication technology. For 
example, fabrication of physical artefacts can be particularly effective in interpreting and communicating the data. 
We specifically experimented with Story Cube and Diffusion electronic notebooks.  

VIII. CONCLUSIONS 

We believe that this work has demonstrated that it is possible, using cheap electronics and publicly accessible 
mapping software, to create an engaging form of environmental sensing at a micro-local level. Although our 
prototypes require a level of electronics and engineering skill above that of most people, they are well within the 
realm of the hobbyist and we believe it is possible to further reduce its complexity as new platforms and products 
become more readily available and cheaper. We also hope that we have shown how artists and engineers can 
collaborate to bridge the gulf between pragmatic technical solutions to social problems and the cultural 
interventions that artists bring to their communities.  
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Abstract 
 

City-wide urban infrastructures are increasingly reliant on networked technology to improve and expand their 
services. As a side effect of this digitalization, large amounts of data can be sensed and analyzed to uncover patterns 

of human behavior. In this paper, we sense and analyze data from a new type of urban infrastructure called shared 

bicycling. We provide a spatio-temporal analysis of six weeks of usage data from Barcelona's shared bicycling 

system called Bicing. We show how these digital traces can be used to uncover daily routines, cultural influences and 
the role of time and space in city dynamics.  

 

I. INTRODUCTION 

We are nearing a time when even the most mundane objects and services will be digitized. As a result of this 

computational pervasiveness, our interactions in the physical world are increasingly leaving behind digital 

footprints. Recent work has shown the value in sensing these footprints to uncover new insights into human 

behavior [2], urban dynamics [3], and tourist movements [1]. In this paper, we explore the underlying “pulse of the 

city” of Barcelona through the lens of a new type of urban infrastructure: a 3rd generation shared bicycling 

program called Bicing. We emphasize not just what the data reveals about the patterns of human movement but 

also how these patterns reflect culture and the overall spatial context of the city. Our objective is twofold: (1) to 

highlight the potential of using shared bicycling as a new data source to gain insights into city dynamics and 

human behavior and (2) to introduce preliminary analysis techniques that we are developing to analyze the ever-

expanding amounts of spatio-temporal data produced by urban infrastructures. 

II. BICING: BARCELONA’S SHARED BICYCLING PROGRAM 

Community shared bicycle programs offer an environmentally friendly, healthy and inexpensive alternative to 

automobile transportation. Recent technological advances have lead to a new generation of systems, which utilize 

technology such as RFID, mobile data services, and automated micro-payments to increase operational efficiency 

and reduce bicycle theft and vandalism. Barcelona’s shared bicycle program, Bicing, was launched in March of 

2007 (Figure 1). It is one of a series of extremely successful 3rd generation shared bicycle programs recently 

deployed in Europe. In late Summer 2008, Bicing grew to 373 stations with an average of 25.5 bicycle parking 

slots, 6,000 bicycles, and over 150,000 subscribers.  

To check-out a bicycle, users swipe their RFID membership card at a Bicing station’s kiosk, which then 

displays, via an LCD screen, the bicycle on the rack that has been unlocked. This information is uploaded to a 

server that keeps track of who has checked out what bicycle and updates the Bicing website with real-time 

information about the number of available bicycles and vacant slots at each station. A check-out provides 30 

minutes of free ride time, every half-hour beyond that costs €0.30 for up to two hours. Bicycles can be returned to 

any station, where they are placed in an auto-locking rack. Warnings, monetary penalties (€3/hr), and eventually 

suspension of membership are possible if a user consistently returns a bicycle beyond the two hour limit. Bicing is open 

from 5AM to midnight on Sunday through Thursday and 24 hours during the weekend. To maintain even distribution of 

the bicycles (load balancing), a small number of trucks equipped with trailers move bicycles around the city. 
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Figure 1. (a) A nearly full Bicing station; (b) A station kiosk; (c) A close-up of a locked bicycle; (d) A map of Barcelona showing 

the location of the 373 Bicing stations. The five highlighted stations are discussed below. 
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A. Our Bicing Dataset 

The Bicing website reports the status of all bicycle stations via a Google Maps visualization
1
. We scrape this 

webpage every five minutes and extract three data elements per station: the station’s geo-location, the number of 

available bicycles and the number of vacant parking slots. We do not obtain personally identifiable information. 

Our data logger automatically accounts for new Bicing stations as they appear online. About 1% of the raw data 

extracted from the Bicing website suffers from one of the following problems: (1) the numbers are unreasonably 

large; (2) the numbers jump by more than five bicycles and then return to their previous values at the next 

observation; (3) sometimes all stations simultaneously report zero available bicycles and/or zero vacant parking 

slots. We clean the data simply by replacing the erroneous value with the most recent valid value. Our cleaned 

dataset includes six weeks
2
 of station observations starting on May 23rd and ending on July 3rd, 2008 for a total of 

over 4.3 million data points. Note that 2 of the 373 stations consistently reported invalid data and were thus 

disregarded from our analysis. 

In the following section, we analyze the temporal and spatial patterns of the Bicing dataset, in order to explore 

the underlying human behaviors and movement dynamics in the city of Barcelona. 

 
 

1
 http://www.bicing.com/localizaciones/localizaciones.php 

2
 Although our web scraper has been logging continuously since May 23

rd
, the Bicing website was down from July 3

rd
 - 30

th
. 
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III. ANALYZING THE “PULSE OF THE CITY” 

A. Temporal Patterns: Sensing Culture and Daily Routines 

The temporal patterns of a city are a reflection of the daily routines of its citizens. Figure 2a shows the average 

number of bicycles “on the move” during a given point along the week. Perhaps the most salient feature of this 

graph is the repeating three-pronged spike, which corresponds to the morning, lunch, and evening commutes. As 

one might expect, the morning commute is absent in the two weekend days, resulting in a two-pronged spike. In 

addition, observe that the “lunch spike” occurs at 2PM, reflecting that Spaniards tend to eat a late lunch. In 

addition, the two most popular Bicing periods—i.e., the periods with the largest number of bicycles on the move— 

are Monday and Wednesday night at around 10PM and that, on average, people tend to use Bicing more during the 

work week than they do during the weekend.
3
 

To further highlight the contrast between weekday and weekend activity, Figure 2b and c portray the number of 

available bicycles at station 47, Ramon Trias Fargas, which is situated next to the University of Pompeu Fabra 

(see Figure 1d).  Early on weekday mornings there are relatively few bicycles at the station. Then, at around 8AM, 

students, staff and faculty begin arriving on campus and the number of available bicycles increases quickly as 

people begin dropping them off. A local minimum occurs at 2PM as people leave for lunch and a second dip 

occurs around 7-8PM as people seem to be leaving for the night. In contrast to the weekday activity, on the 

weekends there is no sign of the 8AM commute. Instead, bicycles slowly trickle in throughout the day. 

Interestingly, however, both the weekday local minima and the weekend local minima seem to temporally align (at 

around 2PM and 8PM, respectively). We are not certain if this is a reflection of the lunch and dinner routines of 

these Bicing users or perhaps an artifact of the load-balancing implemented in Bicing via trucks. We are currently 

exploring methods to automatically detect the presence of the trucks in our data. However, our intuition is that they 

do not significantly bias our analysis. 

 
 

3
 A keen reader may observe that the number of bicycles on the move does not drop to zero on weekday nights when the system is closed. We believe this an 

artifact of Bicing’s operational logistics (bicycles are taken off racks during this time for maintenance) and not a reflection of human behavior . 

 

 
Figure 2. (a) The total number of bicycles checked-out from all 

stations over a week, averaged across the observation period. (b) 

The average number of available bicycles at Station 47, Ramon 

Trias Fargas, averaged across all weekdays (Mon-Fri) in our 

dataset (c) Same as previous but over the weekend (Sat-Sun). The 

dashed line in (b) and (c) indicates the number of parking slots at 
Station 47. 
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B. Spatial Patterns: Sensing the Flow of the City 

The spatial layout of a city has an obvious influence on the movement patterns and social behaviors found 

therein. Barcelona has a mixture of residential, commercial, and recreational areas connected via narrow streets, 

one-way avenues and a multitude of public transportation options. In Figure 4, we explore the interrelation 

between a station’s location and its underlying temporal usage pattern. What is interesting here is not just that the 

temporal patterns differ from place to place but what these differences seem to reveal about the type of place. For 

example, station 185 (Figure 4a) is on the city edge and station 203 (Figure 4b) is in a commercial district along 

Avinguda Diagonal, a major arterial road (these stations are marked in Figure 1d). Their weekday patterns are near 

opposites: on the city edge, bicycles are checked out starting around 7AM just as bicycles begin arriving in the 

commercial district. These usage patterns are an indication of the surrounding locale, e.g., the city edge is more 

residential: people take bicycles in the morning and return them in the evening as they commute to and from work.  

Although not as pronounced, the subtle differences between station 203 and station 170 (Figure 4c) reflect a 

fundamental difference in the reasons why people travel. Whereas stations 185 and 203 are “commuter stations,” 

station 170 is located at the beach. Thus, the 7AM rush of activity does not occur and the rise in incoming bicycles 

is less pronounced than in the commuter stations, as people casually arrive without the pressures of an explicit 

work schedule. Although the weekend figures are not shown above, we also observed that while the city edge and 

commercial stations have considerably different weekday patterns from weekend patterns, the beach station’s 

usage pattern remains relatively constant throughout the whole week.  

The "one hump" pattern depicted in both Figure 4b and Figure 4c is one of approximately eight common 

temporal patterns in our dataset. It is the simplest representation of an “incoming flow” station, often positioned in 

an area that attracts people during the day. In the next section we report a preliminary analysis that begins to tease 

out how different types of usage patterns relate across stations. 

C. Understanding the Role of Time and Space 

In previous sections, we observed the influence of daily routines, culture and location on a station’s usage 

pattern. The usage of Bicing involves a multitude of underlying motivating factors such as commuting, shopping 

and going to eat. Clustering allows us to measure the relative importance of these effects. By placing the clustering 

results on a map, we can begin to see the interrelationship between activity and space. This allows us to explore 

questions like “Do co-located stations share the same usage pattern?” and “How are these usage patterns 

distributed in the city?”  

For clustering, we used the Expectation-Maximization (EM) algorithm found in the Weka toolkit [4]. To 

compute our clustering features, we split each weekday into seven time bins: early morning (7-9AM), mid-

morning (9AM-1PM), lunch (1-3PM), afternoon (3PM-5PM), early evening (5PM-8PM), late evening (8PM-

12AM) and night (12AM-5AM). In addition, we considered the entire 24 hour period and only the ”open” period 

(from 5AM to 12AM). For each time bin, we calculated the average number of available bicycles, the difference 

between the number of bicycles at the beginning and end of the bin’s edge, and a measure of the station’s activity 

defined as the percentage of change in the features with respect to the features observed 5 minutes earlier (i.e. the 

 

 

Figure 4. Average number of available bicycles at stations (a) 185 Olzinelles, (b) 203 Diagonal, and (c) 170 Litoral. 
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previous observation). Note that EM requires an expected number of clusters as its input. We implemented a visual 

analysis tool to inspect the temporal patterns of each station within their geo-spatial context. With this tool, we 

determined eight as the ideal number of clusters. 

Figure 5a displays the clusters that contain stations with similar temporal patterns. Close stations tend to behave 

similarly. However, this is not always the case. Cluster 3 (the blue cluster) is clearly the “city edge” cluster; note 

the number of blue nodes that surround the east, west and southern edges of the Bicing system. Cluster 1 (green) is 

a “commercial district” cluster, tracing the outline of the northern part of Avinguda Diagonal. Cluster 7 (white) is 

scattered in the upper part of the map covering nearly the full extent of the city. This cluster represents the highest 

elevation in the Bicing system and is likely a consequence of a preference to bicycle downhill as Barcelona rests 

on a slight, ever-increasing slope. Figure 5b reinforces this dynamic by showing how stations with high elevation 

very rarely have available bicycles. Station 233, marked above, is an interesting exception. Although it is located 

86 meters above sea level, its usage pattern is distinct from Cluster 7. This shows that although elevation is a 

dominant factor affecting usage, other factors may overcome this dominance. In this case, Station 233 is close to 

both a major park called Montjuïc and residential housing. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced the notion of using shared bicycling’s digital footprints to gain an 

understanding of human behavior and city dynamics. Although our dataset does not contain details about 

individual movement, our results show how Bicing footprints expose the underlying daily routines and patterns of 

Barcelona’s citizens. We are currently working on incorporating data from other sources of urban infrastructure 

including cellular networks and automobile parking sensors to investigate how they might augment our analysis 

and provide different insights into human behavior. We are also interested in building internet- and mobile-based 

applications that suggest nearby stations based on predictive models. In addition, we have begun logging eighteen 

additional shared bicycling programs including Paris, Auckland and Washington D.C. We are planning a large-

scale analysis that compares behavioral patterns across cities. Some of our results have obvious implications for 

the design and operation of the shared bicycling system itself. For Bicing, we have met with the Barcelona city 

government to discuss our findings and continue to correspond with them about our progress. 
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Figure 5. (a) The clustering results; (b) A scatter plot of station elevation vs. average number of available bicycles. 
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Abstract

In this paper, a wireless body area network comprised of heterogeneous sensors is developed for wearable
health monitoring applications. The ultimate application space is in the context of pediatric obesity. The specific
task examined herein is activity detection based on heart rate monitor and accelerometer data. Based on statistical
analysis of experimental data for different key states (lying down, sitting, standing, walking and running), a multi-
modal detection strategy is proposed. The resulting detector can achieve 85-95% accuracy in state detection. It
is observed that the accelerometer is more informative for the active states, while the heart rate monitor is more
informative for the passive states.

I. INTRODUCTION

Wearable health monitoring systems coupled with wireless communications are the bedrock of an emerging
class of sensor networks: wireless body area networks (WBAN). The objectives of such WBANs are manifold
from diet monitoring [14], activity detection [3], [4], and health crisis support[6]. These new networks demand
significant technological advances from sensor development to novel software engineering, signal processing,
wireless communications and networking. Importantly, WBANs must be designed with application-specific design
and end-use requirements in mind. These advancements are necessary to cope with the unique challenges introduced
by deployment on people, such as: unpredictable mobility, heterogeneous sensor nodes, new wireless channels, very
low power requirements, non-invasive sensing and the need for sensors with small footprints. Furthermore, drawing
robust inference from sensor streams requires information from multiple, often disparate, sources. In the current
work, we provide preliminary results from the construction of a WBAN which we will use to drive the development
of assessments and interventions for pediatric obesity applications.

Pediatric obesity has emerged as a major national and international health crisis. National collected data from
2003-2006 show 11.3% of adolescents aged 12 - 19 years by some measures could be designated as obese; a further
16% would be classified as overweight and 32% considered at risk for being overweight [13]. While physical activity
(PA) is tightly related to lower obesity rates in children [11], [7], there are additional factors leading to obesity. The
increasing environmental stress may promote both general obesity (through lifestyle behaviors such as decreased
physical activity) and visceral obesity (through hypothalamic-pituitary-adrenal axis activation and increased cortisol
secretion)[5]. Current monitoring systems validated for research in children typically monitor physical activity only
(such as the much-used Actigraph accelerometer). However, in order to truly understand and reverse childhood
obesity, we need a multimodal system that will track stress levels, PA levels, blood glucose levels and other vital
signs simultaneously, as well as anchor these levels to context such as time of day and geographical location. Our
preliminary KNOWME network is a first step towards such a system.

A key aspect of our work is the unified design and evaluation of multimodal sensing and interpretation, for
automatically recognizing, predicting and reasoning about human physical activity and socio-cognitive behavior
states. On the one hand, this meets the needs of traditional observational research practices in the obesity and
metabolic health domain (based on, and validated through, careful expert human coding of data) while on the other,
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this enables new analysis capabilities that have not been possible before such as providing information on user
emotional state in conjunction with physical activity and energy expenditure.

Many aspects of human behavior are inherently multimodal or require multimodal processing. For example,
measuring and understanding energy expenditure and its etiology requires processing not only activity from ac-
celerometers but other data such as pulse rate, ECG, oxygen intake, as well as contextual information such as
emotions that are marked by humans through their voice, body posture and through physiological signals skin
conductance measures (electro dermal response). Hence, to model human behavior and task-specific activity, both
in terms of what people do, how they do it, and why they do it, it is critical to understand and capture the interplay
between such multimodal streams. Multi-modal coverage of our approach enables cross-channel comparison and
verification (allowing us, for example, to capture relationships between increased heart rate, increased emotional
activity, and changes in physical activity). Our approach to this problem is grounded in statistical signal processing.

In the current work, we summarize preliminary results on activity assessment. We consider a mix of low mobility
(lying down, sitting, standing) and higher mobility (walking, running) states. Features of our problem and approach
do appear in the prior literature. Much work on activity detection appears to center on accelerometer data alone
(e.g.[8], [3], [10]) with some systems employing many accelerometer packages. On the other hand, multi-sensor
WBANs have been implemented and deployed (see e.g. [12], [9], [6]); however in those works, the emphasis
was on the higher layer communication network processing and hardware design – signals from each sensor
were transmitted directly to a central decision making unit. Our focus is on a modest number of heterogeneous
sensors and the utilization of multi-modal signal processing methods; we wish to design decision making and data
interpretation methods that will reside within the WBAN and allow for interaction with the WBAN wearer. For
our pediatric obesity application, activity detection is an indirect measure of energy expenditure quantification as
discussed above. In [4], multi-modal classification is considered. There are some key differences to the approach
taken herein. First, while different sensors are employed, they are similar in the types of measurements taken (e.g.
accelerometers, gyroscopes and tilt measurements), herein we use sensors which measure fundamentally different
quantities that are correlated, but the statistical relationships are unclear a priori. The goal of [4] is to determine
a sampling scheme (with respect to frequency of sampling and sleeping/waking cycles) for multiple sensors to
minimize power consumption. The authors show that their new methods achieve reduced power relative to classical
joint schemes. Our goal is on classifier performance with heterogeneous sensors – future versions of our methods
could incorporate power minimization strategies of [4]. An important question to address is how the correlation
between measurements affects power minimization. We conjecture that the sensors employed in [4] have more highly
correlated observations with regards to the states of interest than our sensors and thus greater power minimization
is possible through the use of their methods.

As our WBAN must be used for a diverse set of decision making processes, all sensors may not be uniformly
useful for each task. We, in fact, see this with the activity detection problem considered herein.

II. KNOWME NETWORK ARCHITECTURE

Fig. 1. Three-tier architecture overview of wireless body
area network sensor system.

The basic foundation of the KNOWME network is our three
tier network architecture as depicted in Figure 1. The first tier’s
goal is data collection based on the heterogeneous sensors that
are coupled to a mobile phone which acts as a “base station,”
equipped with data transmission and processing capabilities.
The second tier is a web server that receives data and can
perform additional processing; the web server transmits the
data to the final tier: a back-end database server that stores the
information. In the sequel, we shall discuss the specific sensors
employed.

Currently, the primary focus of this research is to perform multi-modal sensing and interpretation of data to
serve some of the end-user needs. As such, significant effort has been spent in integrating heterogeneous sensors
to a mobile phone. One challenge in integrating heterogeneous sensors is that these sensors have different APIs,
packaging, and data collection methods. In addition to integrating multiple sensors, synchronization of the data
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received from multiple sensors in the phone is critical for statistical correlation of sensor data and to perform the
multi-modal data processing. Sensor information is continuously recorded on the local storage on the mobile phone.
Our mobile device platform has a 8GB in-built flash memory that can be used for storing sensor information. Sensor
data rates vary from 300bps for the accelerometers to 100 bps for the heart rate monitor. Using these data rates,
we estimate that our 8GB local storage can store 1000 days worth of data. As the Bluetooth wireless link is a
bottleneck for our current data collection, we use time-division multiple-access to schedule the data from different
sensors (equal time share).

The software development phase uses well-known unit testing to extensively test the mobile software suite. In
order to minimize errors in configuring the software, our software has several built-in checks to advise the user if
any of the sensor readings do not match expected sensor behavior. Since the mobile device has to transmit the data
to the backend servers, we are currently developing an opportunistic data transfer mechanism that uses an open WiFi
network where available to transfer data both efficiently and cheaply. In the absence of WiFi networks, the mobile
software is configured to automatically use the cellular data network to transmit the data. Our initial deployment
is mostly with graduate and undergraduate student test subjects with limited (on-going) pilot experiments with
children in the Exercise Physiology Lab at the USC Keck School of Medicine.

A. Sensor Systems

(a)                                                                            (b)                                                                                    (c)

Fig. 2. (a) ECG monitor, (b) pulse oximeter, (c) Nokia Smartphone (GPS and
accelerometer).

The sensor layer is a collection of off-the-
shelf devices that measure features which can
provide insight about metabolic activity; most
(with the exception of galvanic skin response)
are also capable of wirelessly transmitting this
data over a Bluetooth interface. The current
study employs an Alive Technologies[1] elec-
trocardiograph (ECG). The ECG is a single
channel device with 8 bit resolution and a peak sampling rate of 300 samples/second. The pulse-oximeter, also from
Alive, provides non-invasive monitoring of oxygen saturation (SpO2) and pulse rate. The oximeter is a Bluetooth
slave device that supports the Bluetooth Serial Port Profile (SPP). We also have BodyMedia WMS sensors [2] to
measure Galvanic Skin Response (GSR) 1 and motion estimation using accelerometers. We use feature rich Nokia
N95 as the mobile phone platform. N95 supports Bluetooth 2.0 + EDR for quick pairing with external Bluetooth
sensors, and has 3G and WiFi radios for high bandwidth data transfer. In addition to the high bandwidth radio
capabilities, the N95 mobile phone platform has a highly accurate built-in assisted GPS unit that uses a combination
of GPS satellites, cellular tower and WiFi scanning to obtain a GPS position lock in less than 10 seconds. The
stated location accuracy of GPS unit is 30 meters. We have observed accuracy at less than 3 meters in practice.
The data collected from multiple sensors is geo-tagged using the location data collected from the in-built GPS.
Furthermore, our system is also capable of audio and video tagging to assist users to supplement the automatically
collected sensor data (as in [14]). Some WBAN components are depicted in Figure 2.

III. ACTIVITY MODELING

Data collected from our experimental system setup can be used in multiple contexts, for instance by the users
to regularly monitor their physical well being as well as by medical practitioners in assessing the physical health
of their patients. Here, we describe one such application of using the data to automatically derive the activity of a
person with data collected from multiple sensors. Statistical modeling of various test subject states was undertaken
based on the data collected from the WBAN. We examined five different states: lying down, sitting, standing,
walking and running. Again, to reiterate, activity detection has been previously considered with an emphasis on the
use of many accelerometers, yielding a cumbersome network to wear. We conjecture that multimodal data analysis
will enable the achievement equal or even better accuracy and robustness in activity detection with fewer sensors.

1The data of the WMS GSRs are not currently included due to issues with time synchronization.
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Fig. 3. (L) ECG and (R) accelerometer data from the heart-rate monitor for sitting and
running.

In this research, multiple distributions
were considered to fit the data which
for each sensor was predominantly uni-
modal in nature. After extensive exper-
imentation, the use of the pulse oxime-
ter sensor was abandoned due to lim-
ited change in readings for any of the
states of interest for our activity de-
tection problem. Thus, we focused on
ECG and accelerometer data. The dis-
tributions under consideration were: T
location-scale, Gaussian, log-normal, logistic, log-logistic, one-side Gaussian and Laplacian. Where possible,
Gaussian distributions were selected to facilitate the determination of joint densities. The ECG data were pre-
processed as follows: peak detection was performed and the inter-peak time collected. The inter-peak time was
modeled as a Gaussian random variable. An average of the empirical variance for each of the axes over a pre-
specified window of time for the accelerometer data was employed. The walking and running state data were
modeled as Gaussian; however, the lower-activity level data (lying down, sitting and standing) was modeled as a
Laplacian to achieve a better fit. Figure 3 (L) and (R) shows the ECG and accelerometer data for the running and
sitting modes, respectively. We see that both states are relatively well distinguished from each other with significant
differences in the accelerometer data.
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Fig. 4. (L) Statistical fitting for higher activity states (accelerometer data): sitting,
walking, and running. (R) Statistical fitting for lower activity states (ECG data): lying
down, sitting, and standing.

Not surprisingly, ECG and accelerom-
eter data had different discriminatory
properties for the various states, un-
derscoring the benefits of multi-modal
sensing and signal processing. In Fig-
ure 4, we see the statistical fits for
the accelerometer data for high activity
states and the statistical fits for the ECG
data for low activity fits. To develop
bivariate models (joint densities) for the
ECG and accelerometer data, additional
processing (resampling) was required to

determine the correlation between the ECG statistic and the accelerometer statistic in the high-activity levels.
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Fig. 5. Bivariate distributions for (L) running, walking and sitting and for (R) lying down, sitting
and standing.

In the low-activity level
cases, the ECG and accelerom-
eter statistics were assumed to
be independent. The resulting
bivariate densities for each of
the five hypotheses are shown
in Figure 5(L) and (R). For
clarity, the low activity states
are shown separate from the
higher activity states. Bivari-
ate testing yielded state detec-
tion rates on the order of 85%
to 95% – achieving detection
rates with two heterogeneous
sensors comparable to the rates found in [3], where nine single mode (accelerometer) sensors were employed.
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IV. OBSERVATIONS AND ONGOING WORK

Our preliminary system successfully collects data and transmits it to the cellular phone. We conjecture from
our experiments that a few heterogeneous sensors may offer better discrimination and robustness than many
homogeneous sensors. Our preliminary data for activity detection in comparison to [3] appears to bear this out this
conjecture. There are however important engineering challenges associated with WBANs, especially for activity
detection. For our particular set up, we are limited by the mobile phone platform which can only accommodate a
maximum of eight different sensors. If all sensors sample at their maximum sampling rate, the expected throughput
would exceed the capabilities of the Bluetooth link leading to dropped packets. The battery power of the cellular
phone is another bottleneck for the system. Finally, for activity detection, high activity/mobility can impair a sensor’s
ability to sense. This fact can be viewed two ways: it is detrimental in that we lose sensor accuracy, on the other
hand, new features are introduced into the signal which are still indicative of high activity. Our preliminary results
suggest that sensor selection and prioritization will be important to ensure that packets are not lost; furthermore
energy aware sensor management will be critical.

We have recently conducted a pilot study with two pre-adolescent girls following an observation protocol typical
for pediatric obesity studies. We are currently analyzing this data, including designing multi-modal detection
algorithms for deciding between the various states. We hope to share those findings at the workshop. Finally,
introducing contextual cues for use of the WBAN in everyday life will be extremely important; to this end, the
image processing and analysis methods of DietSense [14] will prove very useful. Finally, as noted earlier, power
minimization is of high importance for WBANs and their attendant applications; we expect the methods of [4] will
have promise when properly adapted to our context.
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Abstract 

    Today’s mobile phones are equipped with an increasing set of sensors including GPS, accelerometers, cameras, 

and more that makes them ideal source nodes in urban sensing applications. The growing displays and internet 

connectivity also makes these phones excellent sinks of just-in-time information, including information from other 

sensors deployed in the infrastructure. Exploiting these features, our personalized safety and awareness system  tries 

to enhance personal safety of users around the clock through a collection of services that process personal and 

aggregate community data to track, escort, flag, supervise behaviors and help users coordinate to enhance the 

collective safety of the group. Designed for individuals and groups that operate on campuses and beyond, it intends to 

make campuses safer, by going beyond the processing of individual location data and by providing services based on 

the application of intelligent behavior sensing algorithms and collaborative models to aggregate sensor data.   

 

I. INTRODUCTION 

    Most campus security plans consist of scattered emergency phones, scheduled shuttles, and foot or vehicle 

escorts, but such plans are not always very effective with rising student population numbers and sudden spikes in 

localized security demand. Moreover, many campus security implementations are unreliable and unable to meet the 

needs of busy individuals. Confusing timetables, unclear pick-up locations, and limited hours of service discourage 

many people from actually using campus security services. To compound this problem, many people hesitate to call 

for a security escort out of embarrassment, or false beliefs that they are immune to danger. To address some of these 

challenges, our system takes a broader view to personal safety, leveraging GPS mobile phones and social networking 

to introduce dynamic safety practices. Our system provides user customizable activity monitoring that begins to form 

the basic virtual escort tracking for small trips on foot, longer term tracking during travels, and escalates up to 

model-driven activity monitoring and community based coordination for safety. Instead of focusing on security and 

privacy issues our research is directed towards the creation of semantic meaning from the sensor data, particularly 

reasoning with user locations in time and space, also using context information extracted form maps. Privacy issues 

are implicitly handled by exploiting the phones’ local processing capabilities, provisioning for the use of security 

and privacy from other researchers [8] and by operating in community mode where users are willing to share some 

level of private information in aggregate form with other members of the community to enhance community-wide 

safety.  
    In this position paper we describe a personal safety and awareness framework that is currently being developed as 

part of the Behavior-Scope (BScope) project at Yale [1]. This is centered on the use of smartphones as sources and 

sinks of information and involves coordination among multiple phones as well as other sensors deployed in the 

environment. The mobile phones coordinate with a central server to provide a set of services to the users. For 

instance, when walking across campus, users can put their mobile phone client application in a virtual escort mode. 

This service provides a panic button option and tracks the travel progress of the user to ensure that the user safely 

reached the intended destination. During longer trips, a travel service sends automatic emails and text messages  to 

family and friends providing updates about the trip. For more general personal safety, the phone also learns the daily 

routines of the user and notifies a set of registered recipients at different levels of behavior deviations. Finally, a set 

of aggregate location information and inputs from campus security are used to coordinate the movements of users 
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and campus security personnel during late hours to ensure maximum safety coverage while moving around campus.  

Examples of such coordination include pairing up members of the same group to walk together at night, providing 

safe walking route advice (i.e route that currently has the most members or most security personnel around) and 

dynamically re-positioning security officers (on foot, bike or car) to the places demand surfaces. We also anticipate 

enhancing safety and awareness through coordination between friends and social networking. The same system can 

also bind into the previously developed BScope home monitoring infrastructure, to monitor user safety at home and 

also to notify caregivers of the status of a loved one. In all cases, the mobile phones are used are the primary user 

interface and sink device.  

    The rest of the paper outlines the system architecture in Section II; and the current application features in Section 

III. Section IV and provides a brief description of our results on a rule behavior engine and activity modeling engine 

we are developing. Section V concludes the paper with a set of research challenges considered by the BScope 

project.  

II. SYSTEM ARCHITECTURE FEATURES 

    The broader personal safety model introduced by our architecture (shown in Figure 1) is driven by the 

interpretation of spatio-temporal properties of multimodal sensor measurements. This process is primarily driven by 

two interpretation engines: a probabilistic rule-based behavior engine and a dynamic activity modeling engine. The 

network traffic flows over a heterogeneous set of links including Wi-Fi, IEEE 802.15.4, GPRS, CDMA data links 

and Ethernet. This forms a dataflow graph in which data propagates in the direction of a central server and back to 

the sink devices. The central server controls all the data processing modules and can make decisions to diffuse them 

into the network as needed to improve response times, conserve bandwidth and to interpret data closer to the sinks to 

manage complexity and increase system robustness. 
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Figure 1: System Architecture 

 

    The system uses GPS phones (currently supporting BlackBerry GPS phones) for outdoor environments a 

collection of cameras, passive infrared and door sensors for indoor environments. Users can configure how the 

system should work for them and their level of participation in the system directly from their mobile phones. A more 

sophisticated web portal allows users to interact with the systems at different levels, allowing them to define 

automated notifications, develop new applications and specify how the incoming data should be processed and 
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plotted. The users can specify how they want the system to work for them as their preferences essentially configure 

parameters in the rule-based behavior and the dynamic activity modeling engines described in section IV. The two 

engines reflect the design philosophy of the system when it comes to monitoring human behaviors and providing 

services. A growing part of the system is centered on learning behaviors and patterns to detect deviations from the 

norm. Nonetheless, our testbed experience (and of course human nature) demands checking for certain conditions 

and rules that are not directly extractable. Furthermore, statistical outliers are not always alarming and vice-versa. 

Because of this, a core aspect of our system relies on the collaboration and sharing of parameters between the two 

engines. 

III. CURRENT MOBILE CLIENT FEATURES 

Our initial deployment in an urban setting heavily relies on the client application running on mobile phones. The 

deployed mobile currently supports several features than enable it to be an active contributor to the overall system 

architecture. The mobile client automatically connects to our deployed web portal (www.sense4care.com), where 

users can also configure their preferences in more detail. The mobile client (currently supports GPS-enabled 

Blackberry phones) can also be downloaded from the web portal. Its key features are highlighted below. 

A. Tracking 

The mobile client contains a basic tracking feature that users can select to turn on to allow their location be sent to a 

central server. The user can choose to have this feature on 24-hours a day, or just during select commutes or times of 

day. Ideally, the application will be running continuously so as to collect as much information and allow as much 

personalization as possible. This location information is then accessible from any computer or mobile device that has 

access to the internet via either the standard web portal or the specially-designed mobile-friendly web portal. The 

benefit of this is that you don’t need to have a GPS-enabled mobile phone in order to participate in this system. In 

order for individuals or groups to access a user’s location information, the user must first authorize this access. 

B. Virtual Escort 

The “Virtual Escort” feature is an integral part of the new campus safety model. It allows users to have an escort 

when the user cannot find anyone else to walk with. This feature is useful for users who frequently need to walk 

outside late at night and are seeking a cost-effective and time-efficient solution to staying safe and gives the user 

access to a programmable PANIC button that can let security know there’s trouble and exactly where the user is. 

C. Triggers 

The web interface also allows users to set up triggers that inform family and friends via SMS or e-mail alert when 

the user is leaving or entering a pre-defined space. It automates the process of checking a user’s location by having 

an automated message sent out according to the pre-specified preferences. These triggers can be simple conditions 

about geographic locations or more elaborate behaviors as described in section IV. 

D. “Auto-K.I.T” 

If the user defines certain areas as being associated with specific activities, the system engine can write automatic 

digests of a user’s day to send to friends and families. This would allow a user to automatically “keep-in-touch” 

with everyone, even when very busy and has no time to call or e-mail. Also, at the central security server, this is 

driven by a powerful behavior interpretation engine that would allow system management, and multiple levels of 

user-defined safety mechanisms. 

E. Mobile Phone Power Management 

Since the goal of this application is to make it easy to stay safe and secure anywhere, at anytime, the application 

needs to efficiently manage its power consumption and make its state known to the server at all times. The 

application informs the server of its status on power up and shutting down, loss of GPS signal, and feature usage. To 

conserve power, local processing, intelligent sampling and other sensors such as accelerometers need to be 

exploited. Our prototype experiences have shown that reading the GPS alone can take a noticeable toll on the 

phone’s battery lifetime [4]. Such excessive power consumption could be reduced by utilizing accelerometer sensors 
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and context inferred from the behavior monitoring applications to intelligently manage the GPS sampling and 

communication frequency. The BlackBerry smart phones used in our prototype deployment do not have 

accelerometers but other phones such as the Nokia N95 and iPhone already have them. We anticipate that more 

phone models will have them in the future. 

 

IV. SENSOR DATA INTERPRETATION 

A. Probabilistic Rule-Based Behavior Engine 

This is based on BScope’s hierarchical probabilistic grammar framework detailed in [2,3]. The framework follows 

a language-based approach that uses semantic-level sensor outputs as a sensing abstraction. To sense an activity, the 

environment needs to be instrumented by a set of sensors to extract a string of phonemes. The collection of 

phonemes is parsed by small libraries of probabilistic grammars we call sensory grammars. The outputs of these 

grammars are higher order phonemes that can be parsed by other grammars in the hierarchy. A time-abstraction layer 

allows the sensory grammar framework to reason with temporal quantities. Spatial quantities are implicitly 

considered by the system through sensor labeling. 

    In the personal safety system discussed here, the rule-based behavior engine can be applied in several different 

ways. Users can enter simple rules as regular expressions, and can then form higher-level rules using the outcomes 

of pre-programmed behavior grammars, or they can develop elaborate grammars from scratch. This hierarchical 

mode of operation can also be perceived as a higher order, sensor composition tool that can tie together simple 

sensors in time and space to form a more complex sensor. A detailed example of the composition of a cooking 

sensor can be found in [5]. The application of this system in elder monitoring and the network architecture used can 

be found in [6]. 

B. Activity Model Extraction 

    Although the Rule-Based Behavior engine can classify sensor data into pre-defined activities, the extraction of 

intuitive activity models directly from the data should be an integral component of an autonomous personal safety 

system. Ideally, the personal safety application running on a mobile phone should be able to extract the daily or 

weekly habits of the user and use them to measure deviations and generate alarms when behaviors deviate by a 

certain threshold. This is a challenging task since the system needs to identify the recurring activities over a time-

window without any prior definition of the activities. The mobile phones can collect GPS locations but locations 

alone only provide a low-level dataset that does not directly imply specific activities. Furthermore, the models need 

to capture not only the spatial meaning of the data but also its temporal properties. For instance, a consistent 

everyday visit at a certain location has a different meaning than visits to the same location at unusual times. Our 

initial effort in this direction has developed a four step model extraction method that operates on the three main 

attributes of sensor measurements: location, time and duration. The four steps are summarized below: 

1. Decritize locations using the map context, that is, name the data according to the named area on the map. 

This converts locations in the dataset to a series of labeled events. 

2. For each event type, group together all event instances that have similar start times and durations over a time 

window and relabel the events with spatio-temporal labels according to their cluster classification. This part 

applies a new clustering algorithm we have developed to group together events that have similar start-times 

and durations over the course of a time-window (i.e a day or a week). This is done by applying a set of 

similarity metrics, without knowing the number of clusters in advance. This step essentially descritizes time 

into a finite set of labels and appends these labels as suffices to the labels of step 1. 

3. Using the resulting sequence from step 2, extract activities by mining out the most frequently recurring 

subsequences. This can be done using a data mining algorithm such as the apriori algorithm described in [9]. 

4. The outcome of step 3 provides enough information to build a state machine that describes the activity. The 

spatio-temporal event labels of the mined subsequences become the states of the model. The transition 

probabilities between the states are computer by counting and normalizing the transitions among spatio-

temporal events from step 3.  
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    The above methodology has been tested on an indoor trace originally collected for elder monitoring. Inside homes 

people locations are sensed with cameras and passive infrared sensors but the mechanism of the model are very 

similar. Some of our initial results can be found in [7]. The modeling methodology is currently being extended and 

tested on GPS data collected from mobile phones.  

V. FUTURE RESEARCH DIRECTIONS 

The safety system described in this paper opens a new set of interesting research problems on how to collect, 

interpret and utilize sensor measurements across communities of mobile phone users. Several aspects of the safety 

coordination, route recommendations and security officer patrols could be treated as dynamic sensor coverage 

problems. Urban environments however, and groups make this a challenging problem. Sensors are mobile, the 

terrain is not a flat plane and map context should be exploited. 

     From an architecture perspective, our position is that a user reconfigurable data interpretation service that can 

distribute processing modules as needed across a network of heterogeneous wireless links would provide a powerful 

feature for developing new services. Finally, we advocate that mobile phone technology has reached a level where it 

can become the primary information sink for people. Mobile phones have become deeply pervasive to everyday lives 

and providing an event-driven sensing framework that can notify users about interesting matters in their lives as they 

happen will form the basis for a new generation of applications. The BScope project at Yale is working towards this 

direction by using mobile phones as part of a campus security program and as the main information sink for elder 

monitoring. In the elder monitoring scenario, stakeholders and caregivers get event-driven phone notifications on 

their mobile phones by configuring the two engines described in this paper.  More up-to-date information about the 

project can be found on the BScope project website [1] and its affiliate website at [10]. 
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Abstract

Sensors integrated into mobile phones have the advantage of mobility, co-location with peo-
ple, pre-built network and power infrastructure, and potentially, ubiquity. These characteristics,
however, also present significant challenges. Mobility means non-uniform sampling in space,
and also constrains the size and weight of the sensors. In this paper, we focus on non-uniform
sampling, and imprecision. We investigate the question, “Assuming well calibrated sensors,
what precision can we expect from a network of sensors embedded in location aware cell
phones?” We briefly describe some results that suggest that a Gaussian process based model
is appropriate.

I. Introduction
With increased public focus on environmental conditions and increasing industrialization of
developing countries, the need for environmental monitoring has increased significantly. Current
air pollution monitoring systems typically consist of highly sensitive, bulky equipment placed
in a few strategic locations. These systems, such as the California Air Resource Board (CARB)
monitoring system mostly monitor ambient levels over large geographic areas [1]. Not only do
systems like CARB have very coarse granularity, but they also only measure the human and
environmental health impacts of pollution indirectly.

The Networked Suite of Mobile Atmospheric Real-Time Sensors (N-SMARTS) project [2]
aims to radically improve the geographic coverage and granularity of environmental monitoring
by integrating pollution (and other environmental) sensors into location-aware mobile phones.
Our current sensor devices connect to the phone via Bluetooth, and will eventually fit into
a modified battery pack, for tight ergonomic integration. Sensors integrated into mobile
phones have the advantage of mobility, co-location with people, pre-built network and power
infrastructure, and potentially, ubiquity.

These characteristics, however, also present significant challenges. Mobility means non-
uniform sampling in space, and also constrains the size and weight of the sensors. Although
co-location with people means that samples will often be taken near a particular person, hence
providing a good approximation of a person’s exposure to pollution, co-location also means that
a person’s behavior (putting their phone in their pockets, riding in cars, remaining indoors vs.
outdoors) will impact the readings of the sensors. Tracking a person’s location also has enormous
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privacy implications. Ubiquity implies low cost and, coupled with size constraints, low-precision
sensors. Embedding sensors into a ubiquitous device also implies a passive sensing model, in
which the user can not be expected to perform any action to sense the environment, nor can
they be expected to calibrate or otherwise maintain the sensor.

In this paper, we focus on a small piece of this puzzle: non-uniform sampling, and imprecision.
We investigate the question, “Assuming well calibrated sensors, what precision can we expect
from a network of sensors embedded in location aware cell phones?” We make a case for using
a Gaussian Process noise model and show some early empirical and simulation results.

A. Problem formulation

Fig. 1. The test chamber allows pre-
cise control of the concentration of
toxic gases and fast response, which
allows precise calibration and char-
acterization of the sensors.

Fundamentally, we are interested in measuring and char-
acterizing the environment using sensors embedded in
location-aware mobile phones. For the sake of concrete-
ness, in this paper we focus on carbon monoxide, but
we believe that these results will extend to many other
environmental factors, including other gaseous pollutants,
aerosol pollutants, radiation and network signal strength.

Since we are interested in modeling the environment
as people experience it over time, we use a model
with two spacial dimensions (people basically move two
dimensionally), and a temporal dimension.

B. Data

In order to understand pollution sensors in greater detail,
we have designed a series controlled laboratory experi-
ments. To characterize the CO sensors we are using, we
use two electronically controlled mass flow controllers,
one attached to pure air, the other attached to 100ppm
CO air. The output of the flow controllers is then pumped
into a cylindrical chamber that contain six sensor and associated electronics. Finally, the gas is
injected into the laboratory’s exhaust system (see Figure 1). This setup allows us to precisely
control the concentration and rate of flow of CO in the sampling chamber. The sensors and flow
controller are monitored and controlled using a NI USB-6218 data acquisition module from
National Instruments attached to a laptop.

II. A Gaussian noise model
Sensor noise is often well modeled with a Gaussian distribution. One reason for this is that
Gaussian noise turns out to be a good model for a wide range of physical phenomenon, including
the thermal noise in electronics.

The CO sensor that we use produces a very faint signal, which makes it vulnerable to ambient
noise (e.g. the sensors receive and amplify this noise over the air), including AC power hum.
Figure 2(a) shows the noise deviation from the mean of readings from the sensor before and
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Fig. 2. Empirical results with our CO sensors and test chamber.

after the 60Hz hum and its harmonics were removed using notch filters. The filtered noise is
Gaussian, providing some empirical justification to assume a Gaussian noise process.

III. Empirical results
As the density of sensors at a given location increases, we can increase our precision by super-
sampling, and averaging. For sensors with Gaussian noise (which our CO sensors exhibit)
sampling in the same location, we expect the variance of the signal to beC

n
if we average

the signals fromn sensors with noise varianceC. Note that when the noise is not Gaussian, the
noise power will still decrease, but at a slower rate.

In Figure 2(b), we a experiment with six sensors in a chamber in which we can control the
concentration of CO. In this case, we stepped the concentration of CO by 0.2ppm increments
over an hour, and observed the response of the sensors. The light dots show the response of one
sensor, and the dark dots show the averaged response of six sensors. Clearly the noise variance
has decreased. Figure 2(c) show the variance of the signal versus the number of sensors averaged.
The empirical results match the theoretical results closely!

IV. Gaussian processes
Using Gaussian process regression (GPR), we can also increase the precision of the system even
when samples are not in the same location in space-time (a more realistic situation). The closer
the samples are to one another, the greater the increase in the precision.

We should note that a GPR is appropriate not only because thesensor noise is Gaussian, but
because process by which concentrations of gas mix and vary is also often modeled as Gaussian
[3]. Modeled this way, we have the sum of two Gaussians, which is itself a Gaussian. More
complex models might include inference of prevailing winds as well, but it remains to be seen
if these complications are in fact necessary.

Gaussian process regression is a kernel method, and as such, shares many similarities with
other kernel methods such as support vector machines (SVM). It is beyond the scope of this paper
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to describe the mathematics of GPR. Depending on the kernel, GPRcan be as computationally
efficient as SVM [4].

V. Learning curves

Fig. 3. Simulation of signal variance
at apoint when samples from differ-
ent nearby sensors are also utilized
vs. the number of nearby sensors.
Variance is shown for two dimen-
sional and three dimensional coordi-
nates. For comparison, the variance
is show for the case in which all of
the sensors sample at the same point
in space, as in Figure 2(c).

The amount that the precision of the system increases
depends on the density of sampling. As the density of
sampling increases, so does the precision.

To quantify this increase in precision for a given
algorithm, it is typical to consider the “learning curve”
of the algorithm. The learning curve shows the deviation
of the true values of samples from the inferred function
as the number of training examples increases for a given
area. Sollich [5] provides some reasonably tight analytical
bounds on the learning curves for GPR. In the future
we will present an analysis of the learning curves under
various model assumptions.

In Figure 3, we see simulation results in which the
variance of the signal at a point decreases when nearby
sensor’s readings are also taken into account. In this
simulation, we use a standard radial basis kernel, and the
sensors are uniformly distributed within twice the scale
of the kernel. This means that many of the points will
be relatively far away from the point of interest, and
will not contribute significantly to reducing the variance.
Nonetheless, we can see that as the density near the point
of interest increases, the variance decreases.

VI. Future work
This paper begins to explore one way in which mobility in sensors can be exploited to increase
the usefulness and (in this case) precision of the sensing system. Although it examines super-
sampling under (mostly) ideal situations, many questions remain to be answered. How does
miscalibration impact these results? How do deviations from the Gaussian noise model impact the
learning curves of the algorithms? How accurately can the system parameters be calibrated, and
how does that impact precision? Is the (approximated) radial basis kernel the most appropriate
covariance function? How should increased sample density be traded off with sampling in under-
sampled locations, give limited resources to transmit samples?

Although we have also made some initial theoretical progress in automatically calibrating the
bias of sensors in the sensing system using Gaussian process models [6], many questions also
remain in this area. How does the automatic calibration hold up with a large, real data set. What
is rate of drift of the calibration of the sensors? How much should we trade off calibrating vs.
super-sampling? How can we infer the gain error of sensors?
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Another significant obstacle to ubiquitous and personal sensing using mobile phones is
obstruction of the airflow to the sensor (i.e. because the phone is in the user’s pocket or
purse). How can we detect this situation? Can it be compensated for, or do we need to discard
samples taken in such a situation? In a related question, how can we detect indoor vs. outdoor
environments. We have done some promising initial experiments using the microphone of the
phone to classify the user’s environment based on ambient noise, but these efforts need to be
fleshed out.

Finally, many issues remain surround the end applications of the data. Can users be guided
to safety in an emergency based on their position and the inferred position of a plume? How
should data be visualized? How can it be anonymized while remaining sufficiently useful to
various types of end users?

VII. Conclusion
Although many questions remain to be answered before we can build a working sensor system
based on sensors integrated into mobile phones, we are encouraged by these results. We believe
that mobile sensing has the potential to provide the platform for building the largest scientific
instrument ever made: one with a dynamic range wide enough to construct an accurate image
of the impact that humans have on their environment at a societal scale while also being able to
examine an individual’s exposure to a specific element at a specific place and time. Until now,
no sensing system has been able to do this, and we believe that the potential benefits to society
are enormous.
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Abstract 
 

Capturing useful data in a complex and dense urban space is an inherently challenging task. There is so much data 
people can capture in a city, yet they may fail to capture important information, some of which they don’t even know 
that it exists. In this paper, we discuss an implicit approach to urban sensing and introduce an implicit sensing system 
that combines wearable sensors and mobile phone networks to support early-stage exploration of urban issues. An 
important technical issue that arose in the development of such sensing system is localization in indoor and urban 
canyon environments. We discuss the use of RFID tags as easy-to-deploy location reference points that could be 
installed, modified and reused by end-users. The evolution of user-modifiable location infrastructure should reflect 
and support implicit as well as explicit sensing that takes place in a city.  

 

I. INTRODUCTION 
Cities occupy just 2 percent of the Earth's surface, yet their inhabitants already consume 75 percent of the 

planet's natural resources for goods and services, and 80 percent of global carbon dioxide emission originate in 
towns and cities  [4]. To improve city inhabitants’ collective ability to understand the invisible impact of what they 
do in their everyday life on the global environmental issues, we could exploit personally-owned, location-aware 
sensors. In particular, GPS-equipped mobile phones together with portable/wearable sensors would allow urban 
pedestrians to easily capture various kinds of geographically indexed data, which could be voluntarily shared and 
aggregated to create sensor-powered maps [10] and support participatory urbanism [11] as well.  

 In this paper, we focus on two major limitations of mobile phone-based sensing by pedestrians. First, mobile 
phones often require users to explicitly capture data, which may not be a problem in goal-oriented sensing 
campaigns [2] that take place after environmental concerns arise. However, it is difficult to motivate capture before 
such concerns arise. Second, we need detailed location information to meaningfully interpret and use the sensed 
data; however, GNSS (Global Navigation Satellite System) technologies such as GPS do not work well in urban 
canyons as well as indoor and underground spaces.  

We developed prototype mechanisms for implicit sensing and user-modifiable localization infrastructure, which 
together can alleviate these limitations to empower citizens. Implicit sensing is embedded in our everyday activities 
whose primary goal is not necessarily data collection. Implicit sensing can collect data before citizens perceive the 
need of focused observation. Such data can support early-stage exploration of urban issues.  

Participatory Sensing [2] has developed tools and infrastructure for enabling public campaigns using networked 
mobile devices and sensors. Participatory Sensing requires users to explicitly register for the campaigns. 
Opportunistic Sensing [3] is also a system of people-centric urban sensing. In Opportunistic Sensing, users are 
required explicit procedure for selecting their interest. While the both Participatory Sensing and Opportunistic 
Sensing require explicit procedure of users, our proposed method is for implicit sensing which can extract 
previously unnoticed and unobservable atmosphere. Nokia’s Sensor Planet [1] also proposed a platform for 
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collecting and sharing sensor data for human centric sensing. However, for 
urban sensing, we need to consider about how to analyze and extract the 
meaningful information. EQUATOR e-science project [8] mapped carbon 
dioxide levels using mobile sensors. Our proposed system considered to extract 
environmental information by sensing human body as well as directly sensing 
the environment. 

We first examine the data from a preliminary indoor experiment using 
pressure-aware slippers [15]. This informs the iterative design process of the 
WINFO+ system [5][12], which allows city-wide implicit sensing in the wild. 
Our preliminary experiments with WINFO+ suggest that such footwear-based 
sensing can reveal interesting information provided that there is a pervasive 
location infrastructure that ‘seamlessly’ covers a city. This leads to the discussions on user-modifiable, 
decentralized localization infrastructure for urban sensing, which can be developed by extending and integrating 
our RFID-based localization system [14]. We believe that WINFO+ together with the user-modifiable localization 
infrastructure allows people to collect meaningful data in a city. 

II. IMPLICIT SENSING: THE CASE OF SENSOR-ENABLED FOOTWEAR 
To better understand the challenges and implications of implicit sensing, we have embedded networked sensors 

in footwear. We began by analyzing the data from pressure sensor-enabled slippers [15] focusing on pressure 
distribution and its correlation with a person’s walking patterns. The 
prototype integrates normal slippers, Crossbow MICAz Motes, and 
three pressure sensors to wirelessly send pressure data to a server. The 
server then performs relevant signal processing. The three pressure 
sensors are embedded at the front, the center, and the back on the 
surface of the slippers (see Fig.1). We asked our subjects to walk with 
this prototype, and identified distinct signal patterns for the normal, 
shuffle, and forward-bending walking.  

We call the period during which a pedestrian’s foot contacts the 
ground an epoch. By extracting peak values from the front and rear 
sensors within an epoch, we can closely examine what goes on within 
each epoch and classify epochs into the following four groups:  
Group A: Peak values from the front and rear sensors are high. This suggests smooth movement in normal walking. 
Group B: Peak values from the front and rear sensors are low and high, respectively. This suggests shuffle walking. 
Group C: Peak values from the front and rear sensors are high and low, respectively. This suggests forward-

bending walking. 
Group D: Peak values from the front and rear sensors are low.  

 Overall, our basic data analysis suggests that small inexpensive sensors, if integrated in footwear, can capture 
what mobile phone-based sensors cannot easily capture. Interestingly, footwear devices can capture data without 
requiring a user to explicitly perform data capture operations. However, footwear-based implicit sensing is different 
from surveillance as the sensing is carried out through the users’ personal devices and they must be able to fully 
control the process of (not) capturing, storing, and disclosing data.  

 The idea of integrating shoes and sensors [9] is not new. However, a city-wide urban sensing requires a durable 
and easy-to-use device, scalable and adaptive system architecture, and reliable positioning infrastructure that works 
both indoors and outdoors. Based on the basic analysis, we developed a footwear sensing system called WINFO+ 
[5].  It is based on a client-server model and composed of WINFO+ Client (WIC) and WINFO+ Server (WIS).   

A WIC is a wearable device that consists of a personal computer, “probe shoes,” a GPS receiver, and wireless 
interface (see Fig. 2). The personal computer wirelessly obtains the pressure data from the shoes. The data are 
tagged with the GPS timestamp and compressed by using the four epoch types. WICs then transmit the data to a 

pressure sensorpressure sensor

 
Fig. 1: Sensor-enabled slippers. 

micaz Mote
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Fig. 2: Prototype of WINFO+ Client. 
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WIS, along with the latitude, longitude, epoch type, and 
timestamp information.  In our prototype, WICs can 
communicate with a WIS virtually anywhere in a city by 
using the PHS (Personal Handy-phone System) 
technology.  

WINFO+ is designed for adaptive sensing in diverse 
device, information and resource environments. WICs 
should acquire the right amount of information 
depending on their screen size and CPU power (device 
adaptive sensing). Also, WINFO+ should respond to 
dynamic behavior of data (information adaptive sensing). 
For example, we might need finer-grained data when the 
data change substantially either in temporal or spatial 
axes. Moreover, the system should be able to determine 
the frequency of sensing and transmission depending on 
the amount of battery power left (resource adaptive 
sensing).  

The WIC prototype is easy to wear and designed to 
look socially acceptable in most public spaces. Using the 
prototype, we carried out small-scale experiments in real 
urban spaces. Three male graduate students wore the 
prototype and walked in a Central Tokyo area near 
Akihabara without drastically changing walking styles: 
they walked spontaneously along a street, crossed the 
street by using a pedestrian bridge, and stopped at a train 
station. Figs. 3 and 4 show sample data from one of the 
subjects. This experiment showed that footwear-based 
city-wide sensing can reveal characteristics of the surfaces on which pedestrians walk as well as wearers’ walking 
habits. We also acknowledged the importance of location information in interpreting and using these sensed data. 

III. USER-MODIFIABLE LOCALIZATION INFRASTRUCTURE 
GNSS technologies such as GPS do not work well in urban canyons, indoor/underground spaces, and so on. This 

can be problematic when people want to collect location-relevant sensor data in such spaces. As demonstrated in 
the following scenario, RFID tags can be used as location reference points for urban sensing, thereby 
complementing GNSS technologies:  

Imagine an apartment complex that may have an air contamination problem. The residents can install 
RFID tags at their front doors to help citizen scientists collect air quality data in the building. Mobile sensor 
devices can obtain unique IDs from the tags, and then retrieve corresponding 3D location information by 
querying a database. The tags could also be used for implicit sensing. For example, mailmen’s shoes capture 
and accumulate location-indexed pressure and temperature data in the building over a year, which may be 
later found useful to discuss remodeling of the building for elderly people.  
An important issue here is the motivation and the deployment cost to physically install the tags, measure their 

positions, and update the database. WiFi-based localization [7] require little deployment cost only when WiFi 
stations are already deployed in the environment. In contrast, RFID-based localization uses inexpensive RFID tags 
that can be easily deployed on demand at a wide variety of places. 
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In Japan, the government has shown keen interest in 
RFID location reference points [14] and already 
embedded about a hundred “intelligent benchmarks,” 
which are equipped with passive RFID tags, in the city of 
Kobe. We surely need much more RFID reference points 
to fully cover a city-wide area: perhaps, millions of them 
(e.g., at 10-meter intervals).  

Although government-initiated centralized deployment 
can be heavyweight and costly, they can hire 
professional land surveyors who have the skills to install 
high quality reference points in terms of physical 
robustness and information accuracy. An alternative 
approach is the citizen-initiated decentralized 
deployment that is more scalable in terms of the number of tags. We 
envision a hybrid, user-modifiable environment in which a small 
number of strategically allocated quality-assured tags (T1) and a 
large number of end-user tags (T2) coexist. In such a user-modifiable 
environment, we can reduce the overall deployment cost by reducing 
(1) the number of tags that must be installed and (2) the cost to install 
each tag.  

As shown in Fig. 5, we have developed a P2P-based localization 
system that reduces the number of required tags. The pedestrian 
device can estimate its position using GPS, (active) RFID location 
reference points, dead reckoning modules (Honeywell GyroDRM™), 
and location information shared by colocated pedestrians. Research 
[6] shows that the combination of RFID, GPS, and dead reckoning 
can improve positioning accuracy in both indoor and outdoor 
environments even without such location information sharing. Our 
system uses GPS if the satellite signals are available. Otherwise, the 
system operates without GPS by obtaining location information from 
a nearby RFID tag. Even when the user’s device is away from RFID tags, it can estimate the position by using 
dead reckoning modules. However, as pedestrians move and time passes by, the positioning error increases. In our 
positioning mechanism, colocated devices exchange their location estimation (along with relevant error estimation) 
with each other in order to cooperatively reduce the positioning error considering human mobility patterns.  We 
carried out an experiment in a 54m x 63m space on a university campus and verified the effectiveness of the 
cooperative location estimation.  

To reduce the cost for installing each tag, we have developed a mechanism that automatically estimates the 
position of a newly installed tag by collecting location information from pedestrians who pass by the new tag [13]. 
This mechanism allows people to simply put a tag without manually updating the database. We developed a 
prototype and tested it on a university campus, and found that the location estimation error of a new tag quickly 
decreases and stays below 2 meters.  

These mechanisms together can support the ecology of location reference points by facilitating end-user 
deployment. As our scenario may suggest, existing environmental concerns could motivate end-users to install 
location reference points. However, implicit urban sensing without clear value proposition may not directly 
motivate end-user installation. We would like to understand end-user installation from an ecological perspective 
rather than a narrow scope of cost-benefit balance. For example, people may be able to reuse location reference 
points that were installed for some other purpose. Such practices cannot be prescribed, but could be facilitated by 
technological and social systems. 

Fig. 5:  P2P-based localization system. 
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IV. DISCUSSION AND CONCLUSION 
The combination of WINFO+ and the user-modifiable localization infrastructure enables implicit city-wide 

sensing that can reveal characteristics of ground surfaces as well as walking habits. Note that mobile phone clocks 
can provide a means to tag sensed data with timestamps when GPS is not available. Our approach complements 
mobile phone-based explicit sensing and allows people to capture some data before environmental concerns arise. 
Similar approaches could be used for other kinds of wearable sensors (e.g., heart rate, temperature, moisture, and 
blood pressure sensors).  

 Allowing for participatory contribution of both sensor data and location reference points can create exciting 
opportunities; however, it can also introduce issues around data quality, security, and privacy. How should we deal 
with variability of data quality, and “junk reference points” that could degrade the localization accuracy? Implicit 
sensing unobtrusively collects data from users’ body areas as well as spaces inhabited by people. Capturing and 
sharing such data could cause serious privacy problems. We are currently exploring different approaches to address 
these issues. 

 WINFO+ exploits mobile phone communication (Personal Handy-phone System) for disseminating sensor data. 
Advances in mobile phone technologies may allow tighter and flexible integration of wearable sensing devices and 
mobile phones in the future. In addition, an increasing number of phones are integrated with RFID, Bluetooth, and 
2D barcode technologies. We can design location reference points that exploit these technologies so as to 
complement GPS and facilitate location-indexed data collection by mobile phones.  

Finally, it is important to acknowledge that supporting participatory urban sensing is more than just creating 
easy-to-capture, easy-to-share, and easy-to-modify environments. People need to have information and skills in 
order to meaningfully participate in collaborative sensing and sensemaking. This motivates a future work to design 
an integrated support environment for urban data practices. 
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Abstract

A number of mobile phones such as the Nokia N95 and Apple iPhone are being used by researchers to
explore new people-centric sensing applications. These top-end phones include various sensors (e.g., accelerometer,
proximity sensor, GPS, camera, microphone), radios (e.g., Bluetooth, WiFi, cellular), operating systems (e.g.,
Symbian, customized Mac OS X), and processors (e.g., 330 Mhz ARM, 412 Mhz ARM). While there is some data
on the Nokia N95, little, however, is known about the ability of Apple’s iPhone to support the necessary sensing,
processing and communications needs of these emerging sensing applications. We present the first quantitative
performance evaluation of the iPhone’s sensors, localization engine, and networking stack while running CenceMe,
a representative people-centric sensing application. We profile the performance of CenceMe running on the iPhone
in terms of energy consumption and computational speed of its algorithms. One drawback of using the iPhone over
the N95 is that it does not allow third party applications such as CenceMe to run as a background process, making
continuous sensing problematic. The upside is that the iPhone offers a rich UI architecture, high computational
capability, and an efficient application distribution system through Apple’s App Store.

I. INTRODUCTION

New top-end mobile phones such as the Nokia N95 [7] and Apple iPhone [8] are enabling a new class of
mobile, people-centric applications [1] [2] [3] [4] to emerge. While researchers have demonstrated that the Nokia
N95, a Symbian-based mobile phone, can efficiently host sensing applications [2] [3] [4], little is known about
the ability of the Apple iPhone to support people-centric sensing applications. Recently, Apple opened up to the
deployment of third-party applications with the release of the iPhone SDK in March 2008. This, combined with its
ease of use, rich UI, and efficient application distribution system through the Apple App Store makes the iPhone
an appealing platform for development of new mobile applications. A natural question for our community is what
are the trade-offs when implementing and deploying a sensing application using the iPhone; more specifically:

• How easy is it to program a sensing application on the iPhone?
• What are the pros and cons of the iPhone in comparison to other sensor capable mobile platforms?
• What is the energy profile when the iPhone’s sensors, WiFi and cellular radio are involved in realizing the

application?
• What is the processing performance of the iPhone when running signal processing algorithms such as fast

fourier transform, a common tool used to interpret audio and accelerometer sensor data?

We address these questions in this paper. While the presentation of our results is limited due to space, we provide a
short qualitative comparison of a number of devices used for mobile sensing including the Apple iPhone, Nokia N95,
and Intel Mobile Sensing Platform (MSP) [11]. The main contribution of this paper is the observations and insights
when running CenceMe, a representative people-centric sensing application [4], on the iPhone. Specifically, we
quantitatively evaluate the iPhone’s computational capability, energy profile, and localization accuracy. We believe
this study will be useful to the growing community of iPhone developers, particularly, those interested in building
people-centric sensing applications.

II. COMPARISON OFMOBILE SENSING PLATFORMS: IPHONE, N95, AND MSP

In what follows, we present a short qualitative comparison of the Apple iPhone, Nokia N95 mobile phone, and the
MSP. All these devices are actively being used in support of mobile sensing applications and systems development.
The N95 is currently one of the top-end Nokia mobile phones equipped with an accelerometer and GPS, while the
MSP is representative of the class of embedded devices used for human activity recognition research. A simple
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TABLE I: Platform comparison for the Apple iPhone, Nokia N95, and Intel MSP

iPhone Nokia N95 Intel MSP 430
Processor 412 MHz ARM 330 MHz ARM 416 MHz Xscale

RAM up to 70 MB up to 128 MB 256 KB
ROM 20 MB up to 160 MB 32 MB

Storage up to 8GB/16GB min-SD card (up to 8 GB) mini-SD card (up to 8 GB)
Sensors 3-axis accel, mic, GPS 3-axis accel, mic, GPS 3-axis accel, mic, light, barometer, temp, IR, humidity, compass
Radio WiFi WiFi, Bluetooth Bluetooth, Zigbee

comparison of some of the technical details of the three devicesis reported in Table I. As shown in Table I, all
three platforms present similar computational capabilities given similar processors, and large storage and ROM
size. The RAM on the MSP is much smaller than on the iPhone and N95, which first and foremost are designed as
mobile phones, hence the need to handle multiple processes at the same time including graphics computation. The
MSP’s short-range radio technology is flexible allowing the implementation of advanced pairing algorithms between
nodes while the use of the iPhone and N95’s short-range radio is limited to simple neighbor interactions. The main
difference between the three devices is represented by the sensing capability; specifically, the MSP outshines both
the iPhone and the N95 in terms of the number of available sensors. This is not surprising given that the MSP is an
embedded purpose-built platform for activity recognition. However, even with a reduced set of on board sensors, the
iPhone and N95 are powerful devices and capable of inferring human activites - for example, we have implemented
the full featured CenceMe application on the N95 [4] as well as a version on the iPhone [10]. Providing mobile
phones with more sensing capabilities (e.g., gyroscope) would greatly enhance the humans presence classification
accuracy given the broader input to the classifiers feature vectors.

III. PROGRAMMABILITY CHARACTERISTICS OF THE IPHONE

In what follows, we analyze the programmability characteristics of the iPhone. Any third-party application is
handled by the iPhone OS using a sandboxing model which does not allow the application to access some of the
iPhone functionalities (such as WiFi APIs or iTunes) for security reasons. A simplified version of a SQL database,
namelysqlite [14], designed to run on resource constrained environments, is also supported as a means to ease
application on-the-phone storage.

By following a systematic approach, we intend to answer the following question: what are the positive and
negative aspects of the iPhone as a programmable platform? Although the iPhone presents a rich set of features
making it potentially a good platform for the development of sensing applications, the iPhone SDK also provides
some barriers in its current stage of development (i.e., iPhone SDK for iPhone OS 2.2). In what follow, we briefly
discuss the pros and cons of the current iPhone development environment.

Advantages:
- Programming Language. The iPhone is programmed in Objective-C [12]. Objective-C is a superset of the C

language, with some object oriented programming features. The advantage of Objective-C over other languages
such as Symbian C++ adopted by Nokia, is that it is a quite simple language to learn and use. The iPhone APIs
and emulator (which runs on desktop/laptop machines) make programmability, UI design, and code debugging an
efficient process for developers.

- APIs. The APIs are well designed and documented, abstracting the developer from low level components.
For example, the location engine API returns data transparently to the user regardless of whether the location
coordinates come from WiFi, cellular triangulation, GPS, or a combination of sources. In addition, the accelerometer
and microphone APIs are cleanly designed and make accessing these devices simple and strightforward to use.

- Indoor Localization. By using WiFi [6] and cellular triangulation to determine the location, the iPhone
localization for indoor spaces is quite accurate, as discussed in Section IV. This is an important feature, for
example, for mobile social networking applications considering that people spend a large amount of time indoors.

- User Interface. The iPhone experience is greatly enhanced by the Cocoa-Touch layer architecture [9] that
provides for a good user experience. Combined with a powerful graphics framework, this makes the iPhone UI one
of the best presentation layers of any mobile devices.
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- Application Distribution. Apple provides an efficient way to distribute third-party applications to the public
through the App Store [13]. Once an application is tested and approved by Apple, the application is posted on the
App Store. After that the application can be downloaded and automatically installed on any iPhone.

Disadvantages:
- Lack of Background Mode. The main drawback of the iPhone is the lack of background mode to run third-party

applications. This is enforced by Apple for security reasons. This means that anytime the phone goes into sleep
mode or the user launches another application, the currently running third-party application is terminated. As a result
of this design decision, sensing applications cannot provide continuous sensor data feeds. Therefore, applications
can only generate intermittent data streams. This limits the effectiveness of continuous sensing application such as
CenceMe. Apple’s response to the lack of background capability is thePush Notification Servicecoming in the
next releases of the SDK. With the push notification service, probes can be sent by the Apple backend servers,
which, in turn, serve as relays for push messages sent by a sender host to a receiver iPhone. As the receiver iPhone
is woken up by the probe the user is asked by the iPhone OS whether to let the application run in response to the
probe message or not. It is worth noting that the Nokia N95 and Intel MSP support background mode and therefore
support the implementation of continuous sensing applications.

- Short-Range Radio API Limited Capability. Currently, it is not possible to access directly the Bluetooth or
WiFi radio stack APIs on the iPhone. The only way to exchange information between neighboring iPhones is by
using the iPhone networking stack via the Bonjour service through WiFi. The short-range interactions of devices
via this networking capability is therefore very limited and does not allow developers to build sophisticated pairing
protocols.

IV. PERFORMANCEEVALUATION

In this section, we report some initial results from a number of experiments aimed at evaluating the iPhone
computational capability, battery duration, and localization accuracy by using the original iPhone model (without
GPS) and the new iPhone 3G (with GPS) running, respectively, iPhone OS 2.0 and 2.1.
Computational Capability. In order to evaluate the processing power of the iPhone we run a fast fourier transform
(FFT) algorithm, which is part of the CenceMe software suite, and measure the iPhone computation time. The FFT
computation evaluation is performed during normal CenceMe usage process [10]. The FFT implemented as part of
the CenceMe application is the Kiss FFT [15], a well known open source high performance FFT library. We choose
the FFT as a means to evaluate the iPhone under high computational load because the FFT is a common tool used
in inference techniques applied to sensor data such as accelerometer and audio data streams. As shown in Figure
1, the iPhone computation time up to 4096 FFT points is below 60 msec even for a large number (i.e., 60000)
of sampled events in time. Many sensor data analysis algorithms make use of 512 - 2048 FFT points calculation,
which means that they could efficiently leverage the iPhone’s computational power. Large data bins in time, up to
60000 samples in our experiment, could also be quite efficiently handled by the FFT on the iPhone in at most 200
msec.
Battery Lifetime. We perform some experiments to quantify the battery drain of the iPhone when running CenceMe
compared to the baseline power usage without CenceMe. We set the screen saver to off so that the phone never
goes into standby mode. The battery duration for different data upload rates when CenceMe is running is compared
to the duration when CenceMe is not running, as shown in Figure 2(a). With the phone’s standby mode off and
running CenceMe continuously, the battery lifetime spans between 4 hours and 37 min to 7 hours according to the
upload rate. We then turn the screen saver back on and set it to 5 minutes and run CenceMe with the following
cycle: run for 5 minutes, let the screen saver go off, leave the screen saver up for 5 minutes, wake the phone up for
5 minutes, and so on, until the battery discharges completely. In this way, for the same upload rates, we obtain a
phone usage time (meaning time available to operate CenceMe) between 4 hours 50 min and 5 hours 20 min. (Note,
the battery maximum usage is between 10-11 hours). This battery duration is similar to the duration obtained with
iPhone usage patterns comparable to the one of our experiment when running different applications than CenceMe.
This is because the prevalent battery drain is due to the iPhone LCD screen rather than the networking activity for
data transmission/reception operated by CenceMe.
Localization Accuracy. To evaluate the localization accuracy of both the old model iPhone (without GPS) and the
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Fig. 1: FFT computation time as a function of (a) the number of samples in time while varying the FFT bin size (as shown in the legend)
and (b) the FFT bin size while varying the number of samples in time (as shown in the legend).

TABLE II: Localization accuracy for different places in the Dartmouth Campus - Legend:C.S. = Cellular Signal;A = Old iPhone localization
accuracy (m);B = iPhone 3G localization accuracy (m);C = Garmin GPS accuracy (m);D = Old iPhone-Garmin GPS localization difference
(m); E = iPhone 3G-Garmin GPS localization difference (m)

Location WiFi C.S. A B C D E
1 Computer Science Bld indoor good good 83 22 N/A N/A N/A
2 Computer Science Bld outdoor good good 44 17 14 29 36
3 Library outdoor good good 17 9 8 0 1
4 Library indoor good mediocre 13 5 N/A N/A N/A
5 Golf course none good 759 17 5 45 1
6 Engineering Bld weak weak 95 17 5 14 0
7 Main St. none weak 179 47 11 5 4
8 The Green none good 323 47 5 24 2

iPhone 3G (with GPS) we carry out the following experiment: we walk in the Dartmouth College campus with both
the iPhone models and a Garmin eTrex GPS device. We record the geographical coordinates from the Garmin and
the iPhone devices at eight different locations. Eight clusters are shown on the maps in Figure 2(b) and Figure 2(c),
each cluster indicating the location manually tagged by the person carrying the devices, the location reported by the
Garmin, and the location indicated by the old model and 3G iPhones. The old model iPhone’s localization engine
uses WiFi [6] and cellular triangulation. Therefore, when WiFi and/or the cellular coverage is poor the resulting
localization accuracy is low. This can be seen for locations associated with clusters 5 and 8 where there is poor
WiFi and/or cellular coverage. In case of clusters 1 and 4, which are indoor locations where GPS performs poorly,
the iPhone localization is more accurate given the high quality of the WiFi and cellular signal. The old iPhone
model estimates an accuracy between 13 and 759 meters, as shown in column A of Table II. Dartmouth College
is located in the small college town of Hanover, NH, and subquently not served by many cell towers. Clearly, the
availability of more cell towers would allow the iPhone’s localization triangulation algorithm to be more accurate.
The actual distance difference between the old iPhone and Garmin GPS reported locations, as shown in column
D of Table II, is 45 m at most, indicating that the iPhone localization algorithm uses a conservative approach
to estimate its accuracy. The GPS boosts the localization accuracy of the iPhone 3G, being particularly effective
where there is a lack of WiFi coverage or when the cellular signal is poor. This can be seen from columns B and
E of Table II where, respectively, the error estimated by the iPhone 3G and the localization difference between the
iPhone 3G and Garmin GPS are reported. It is evident how the iPhone 3G-Garmin GPS localization difference is
smaller than when using the old iPhone model.

V. RELATED WORK

There is a growing body of work on the evaluation of sensing platforms for embedded sensing systems. For
example [16] discusses the technical details and performance evaluation of the Telos motes, a widely used sensing
platform in wireless sensor networks research. With the increasing interest in people-centric sensing applications,
where sensing devices are carried by individuals, new sensing platforms are being developed, evaluated, and reported
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Fig. 2: (a) Battery duration with and without CenceMe running while the iPhone screen saver is set to off. - Localization accuracy for eight
different locations in the Dartmouth campus of (b) the old iPhone (no GPS), and (c) the iPhone 3G (with GPS).

in the literature. While the Intel MSP is used for activity recognition [11] there is little available in the literature
on the evaluation of mobile phones for sensing. In [3] and [4] the authors present some early performance studies
when using mobile phones for sensing applications. In [3], the authors show some energy profiling of the Nokia
N95. In [4], the authors present a detailed evaluation of the N95 in terms of programmability and computational
performance including detailed energy considerations.

VI. CONCLUSION

In this paper, we presented an evaluation of the iPhone running the CenceMe application. We quantitatively
evaluated the iPhone’s computational capability, energy profile, and localization accuracy. We showed that the
computational capability of the iPhone is sufficient to handle high load FFT calculations. We also showed that
iPhone’s cellular and WiFi assisted localization outperforms pure GPS-based localization, as long as cellular and
WiFi coverage are present. We believe this study is useful to iPhone developers, particularly those interested in
building people-centric sensing applications.
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Abstract 

 

We discuss a study we conducted using the Mobile Sensing Platform and GPS information to record the activities 

and locations of 53 subjects, each of whom collected data for one week. Using this data we are developing methods 

for combining activity inference from sensors to infer the mode of transportation, label significant locations, and 

extract trips. Although our data collection was conducted using a non-consumer sensor platform, we discuss how our 

methods can translate onto existing mobile platforms such as the iPhone and Nokia N95, and how these platforms 

will enable us to study larger populations to draw more concrete conclusions about the relationship between the urban 

environment and people’s activities. 

 

I. INTRODUCTION 

As sensing platforms have advanced to become more usable and more readily available, the range of potential 

users and applications continues to expand. At the same time, commoditization of sensors in mobile phones has 

increased their availability and provided researchers with opportunities to study much larger populations than in 

the past. One area of interest in these sensors has been activity inference: the ability to tell what activities a person 

is performing based upon sensor information. Activity inference provides the ‘what’ of a user’s context while 

location sensors (such as cell-tower/WIFI localization and/or GPS) provide the ‘where’.  

This ‘what’ and ‘where’ information can be used by a number of mobile phone applications, from physical fitness 

and health monitoring, to recommendation systems, to studying environment and personal  behavior. In this paper 

we focus on the last application area, though the techniques we develop are applicable to a number of different 

applications. We worked with colleagues in the College of Architecture and Urban Planning’s program on the 

Built Environment who are interested in studying the effect the urban environment has on the types of activities 

people engage in. Some of the questions these researchers are interested in are: what associations exist between 

different types of activities and different kinds of urban environments; what characterizes the land use patterns 

where people spend long periods of time; and do the properties of origins and destinations differ between short and 

long trips or trips made by different modes of transportation. To help answer some of these questions, we 

conducted a study to validate that sensors can be a useful tool for studies of the built environment, and to develop 

methods for performing these analyses on a larger scale. We collected one week’s worth of sensor and GPS data 

from 53 participants. In all we gathered approximately 2,900 hours of data and ~2,900 surveys via the Experience 

Sampling Method (ESM) to provide ground truth. In the rest of this paper, we discuss the data collection, the 

methods we are developing to analyze the data, our validation for our method’s usefulness, and our future work of 

implementing these methods on mobile phones to expand these studies to hundreds of users.  

II. RELATED WORK 

Mobile device-centric sensing has become an active area of research in the past few years. Several projects in the 
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academic research community and the industry are quite relevant to this work. Agapie et al. [5] present the 

Personal Environmental Impact Report (PEIR) system in which they leveraged mobile devices to collect time 

stamped location data and use this information to build models that estimate individuals' impact on environmental 

pollution levels. Miluzzo et al. discuss the CenceMe system in [6]. CenceMe leverages sensing capabilities of 

Mobile Devices to infer contextual information such as activity, availability, surroundings, etc., and injects this 

"Sensing Presence" into social networking applications like Facebook and MySpace. Liao et al. [8] used GPS data 

alone with a relational Markov network to infer the activities a person performs based upon the time of day, GPS 

trace, and their proximity to stores and restaurants. 

The Smartraq study investigated the relationship between objectively measured physical actvity and objectively 

measured urban form; however, this relationship was based solely on subjects’ home neighbrohood environment, 

rather than the complete spatial area of activity [7]. Mohan et al. discuss TrafficSense in [9], a framework in which 

they use sensors on mobile Smartphones to monitor road and traffic conditions, including mode of transportation.  

III. DATA COLLECTION 

For our data collection we wanted to collect GPS readings, accelerometer traces, and barometric pressure 

readings (which aid in detecting when people are moving up or down). Even though there are a few mobile phones 

such as the Nokia N95, and the new iPhone 3G, which have GPS receivers and accelerometers, these platforms are 

not yet perfectly suited to perform data collection necessary for our applications. While mobile phones excel in 

being robust, widely available, and relatively inexpensive devices; they often have restrictive security models, 

limited hardware access, poor documentation, and short battery lives. For example, the GPS receivers of the N95 

and iPhone 3G are functional, but they do not provide data of an adequate quality for an initial experiment. These 

restrictions make it difficult to build data collection applications that need to run in the background for prolonged 

periods of time, a basic requirement for data collection in a research setting.  

Instead we used the Mobile Sensing Platform (MSP) [3] which combines an Intel XScale processor with an 

accelerometer, barometric pressure sensor, light sensors, humidity sensors, microphone (not used in this 

experiment), GPS, and storage capacity. Subjects participating in the experiment were given an MSP inside a box 

with a belt clip, shown in Fig. 2, to be worn on their waist, and a cell phone for entering ground truth survey 

information.  

Subjects were recruited to wear the device for a one-week period. During the week they would wear the MSP 

clipped on their waist and carry a Windows Mobile SMT phone wherever comfortable. The Smartphone was 

running the MyExperience ESM [2] sampling software, which would prompt them for a survey approximately 

every hour. These surveys asked questions about activity type, duration, purpose, and location (Fig. 2, middle). 

There were 53 participants with an average age of 32 and standard deviation of 11 years. Thirty-eight percent were 

female, and 86% were college graduates or had a post-graduate degree. On average each subject collected 

approximately 53 hours of data during a week. As subjects were allowed to turn off the device when they did not 

wish to be monitored, the amount of data collected varied among different subjects. Fig.  1 (left) shows a bar chart 

 
Fig.  1.  (left) Data collected from each subject with the amount of time a GPS lock was available. (right) Each line indicates a trace of data collected from 

subjects showing good coverage throughout the day and days of the week. 
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indicating the total number of hours of data collected from each subject in blue, along with the lengths of time 

when a GPS lock was available shown in purple. The percentage of time when a GPS lock was available is shown 

for each subject as well; on average a GPS lock was available 66% (std. dev. 28%) of the time. Also shown in Fig.  

1 (right) is a trace showing the start and end time of a recording session as a horizontal line, for all the data 

collected, organized by day of the week. The data collected is spread fairly well across the days of the week as well 

as covering most of the hours of the day.  

IV. DATA ANALYSIS 

The data collected from our experiment serves as a test bed for the development of our analysis methods and 

models. Of particular importance to this research is the fusion of Geographical Information System (GIS) data 

sources with GPS readings. While typically one might assume that GIS data are difficult to obtain and use; in 

reality, these datasets generally exist for larger metropolitan areas and are frequently freely available from local 

governments. Because of the added value of geographic information, rather than focusing our efforts on extracting 

information from the raw GPS and sensor trace without any prior knowledge, we use the GIS data layers to provide 

the location of features such as roads, bus routes and bus stops, building outlines, and land use to bootstrap our 

inferences. While the analysis methods presented here used data from our MSP sensing device, we are also 

investigating how well these methods and the associated infrastructure transfer to mobile phone platforms for the 

evaluation of similar methods with a variety of data sources and usage scenarios.  

A. Mode of Transportation 

One inference we want to make is to predict transportation mode for personal trips. Given the sensor information 

and GPS traces, we would like to determine when someone is in a car, a bus, walking, or riding a bike. Walking 

and bicycling activities tend to involve periodic movements (pedaling and stepping) that we can identify using a 

step detector based on accelerometer readings. Pedaling on a bicycle is somewhat similar to walking, but often 

exhibits distinct accelerometer and velocity patterns. When GPS information is available, we can make use of GPS 

velocity estimates to help differentiate between walking and cycling. Bicycling tends to have interspersed periods 

of pedaling and coasting, so within a series of GPS+sensor records, if we detect periods of rapid motion with no 

stepping, the series is more likely cycling than walking. 

For cars and buses we can similarly use some sensor information because car/bus rides look very different from 

walking, i.e. the lack of steps. However, because of similar velocity and accelerometer patterns, differentiating 

between bus and car trips can be difficult. In this case the GIS methods become very useful; we can overlay a GPS 

trace on a general street grid as well as a bus route layer, as shown in Fig. 2. The blue trace shows a route which 

diverges predefined bus routes, which results in a higher confidence that the trip was made by car. Likewise, the 

red trace shows a trip of sufficient duration following a bus route, which also includes stops at mapped bus stop 

 

Fig. 2.  (left) GIS Data showing street roads, bus routes, and bus stops; (middle-left) Questionnaires that prompted users to enter survey data about the 

activities they were doing; (middle-right) Picture of mobile phone users carried to enter surveys; (right) sensor platform (MSP) shown out of the box and 

inside the box 

 

48



 

locations, so this trip was more likely to have been made by bus. However, because of the staccato motion of stop-

and-go traffic, a car trip can also inadvertently appear to be a trip made by bus. Nevertheless, it may be possible to 

differentiate between car and bus trips based on the location of bus stops (versus random traffic stops).  

B. Extracting Trips and Dwell Locations 

A majority of people spend their time at several distinct locations throughout the day: home, work, retail and 

grocery stores, restaurants, etc. From the data we have collected, we are particularly interested in identifying 

locations where people spend a great deal of time, and associating these locations with information about the built 

environment obtained from GIS data sources. Fig. 3, shows a GPS trace from several days of one of our subjects. 

In this figure we’ve colored the trace with points where the person was stationary and moving, along with several 

locations where they dwelled for long periods of time. The combination of activity information, GPS location, and 

GIS data provides a very rich information base for the investigation of spatial patterns of personal behavior. For 

practitioners of urban design, transportation planning, and public health, knowledge of how people in a given area 

interact with the surrounding environment would be invaluable. Do people living or working in a particular area 

have more or less physical activity? Do they tend to go out for lunch? What restaurants do they visit, what grocery 

stores do they purchase from, and how frequently? Do they walk, bike, drive, or take public transportation to get to 

nearby restaurants and stores? Do these patterns of behavior vary with the socioeconomic status of individuals or 

neighborhoods?  

C. Validation and Usefulness 

In addition to the sensing and location information we collected from our subjects, we also asked them to answer 

hourly surveys asking questions about the type, duration, and location of activities they were performing. The 

purpose of these surveys was to provide some ground truth for evaluating the performance of activity inference. 

Ideally we would like to obtain fully labeled datasets; however, this is not feasible given the scale of data 

collection involved and, of course, cost limitations.   

The surveys are used as testing data to verify that the automatically classified activity matches self-reported 

activity. However, unlike many statistical techniques, the ground truth here should be treated with some care; 

subjects may make mistakes in recording their activity or in estimating the true duration of continuous activity. For 

example, a subject walking home may have reported walking for 20 minutes but there may have been several 

minutes of window shopping, standing at crosswalks, etc. Due to these complications we have to be a bit more 

careful about how we incorporate the self-reported survey data for judging the accuracy of our methods. We are 

currently examining several methods and heuristics to determine which methods provide the best insight.  

The question of usefulness for the GIS researchers is currently on an on-going research problem. As we complete 

more of the analysis of the data it will be possible to tease out more information from the data and determine if the 

 

Fig. 3.  GPS trace showing the path a person followed over several days. Stationary GPS points are shown in red, moving points are shown in green. Inserts 

show the GIS layer information for several points along the person’s path 
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researchers’ hypotheses are borne out by the experimental data. While the data set is quite large, in order to make 

conclusions that would affect urban design or public health policy for long term effects, it will be necessary to 

isolate fewer variables and conduct more longitudinal studies.  

V. CONCLUSION AND FUTURE WORK 

While there have been several sensing platforms that have reached a large audience of researchers [4], [3]; in 

general large scale deployments have been the exception rather than the rule. However, with the commoditization 

of sensors in mobile phones, the audience of available end users is much larger than would be possible for 

traditional research platforms to reach.  While mobile phones do have some limitations, their wide adoption and 

ever growing capabilities make them ideal for the next generation of location-based sensing applications.  

The current methods we are developing are based on data obtained from the MSP and continuous GPS (when 

available). However, we are also conducting several pilot studies using the Nokia N95 and iPhone. The 

accelerometer data retrieved from the N95 and iPhone are quite similar to the data obtained from the MSP. A few 

important differences are that while the MSP is be clipped on the belt and not usually moved, the N95/iPhone 

would often be manipulated to look up information or to make calls, which would introduce noise that would need 

to be taken into account in our inference models. Another important difference is that the location stack on the 

iPhone provides several levels of localization: large scale cell tower localization, medium scale WiFi localization, 

and high-precision GPS localization. Rather than require the iPhone to continuously gather precise GPS readings, 

we are instead trying to use more coarse grain location estimates in our algorithms to more intelligently decide 

when to switch to more accurate (and power hungry) localizations. If a person is sitting at work inside a large 

building it makes little sense to try to get a GPS lock, instead we might be satisfied with the cell tower localization 

and only decide to obtain WiFi or GPS localization if we believe the person is leaving the building.  

The study described in this paper has provided a large amount of useful data which we will be able to use in the 

design of algorithms and applications for mobile phones. However, while we were able to collect a great deal of 

data in this study, in order to be able to answer questions of how the urban environment affects what people do, we 

need to collect data for longer time scales and from more individuals. With the increasing capabilities and adoption 

of mobile phones, developing methods that can be implemented on mobile phone platforms opens up the 

possibility of reaching large audiences. But, at the same time, custom devices that are readily available are still 

important and both can provide useful data that is applicable to both custom sensing platforms and commodity 

mobile phones. 
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Abstract

The extent of human flow in the urban space has reached unprecedented levels, and is therefore the 
focus  of  the  present  study.   Unlike  common practice  on urban monitoring which utilizes  cameras  or 
sensors, this research aims to introduce a new platform of urban analysis and monitoring by using mobile 
sensing to recognize urban behaviour. Population density and its moving pattern can thus be visualized 
from the usage of the mobile phone. 

The mobile sensing system is implemented on a web-based interface in order to maximize compatibility 
and interoperability. The aggregate mobile usages and antenna-mast positions are interpolated into grid-
density surfaces. We then analyze urban patterns at a point of time to illustrate how people experience 
their city. Furthermore, the analytical results help to detect and to explain geographical ‘hot spots’ and 
clusterings of the unique characteristics of each urban space.  Finally,  we present visualizations of the 
results such as pseudo color and contour maps in order to demonstrate the urban dynamics.

I.INTRODUCTION

     With the ubiquity and ever-increasing capabilities of mobile devices, cell phones and their locations could 
potentially become a powerful source to describe the pattern of the urban space. Traditionally, urban monitoring 
and analysis rely on a fixed location and a considerable amount of statistical data. This procedure does not permit 
the identification of multi-temporal events in wide areas. Another key problem is how to acquire and update the 
statistical data of the moving objects, for instance, humans and their activities in the whole city space.
     In this research, the usage of mobile devices will be treated as a medium for data collection. Erlang data that 
represent a distribution of call duration in the Global System for Mobile Communication (GSM) network could be 
performed as aggregate-data sources to estimate the population density of a city. For the large scale monitoring, 
clusters  of  Erlang data from mobile  base  stations  are excellent  at  providing indirect  interpretations  of  spatial 
patterns of urban life and its temporal dynamic. This aspect is very useful in the view of public monitoring. It 
could potentially become a new way to extract or identify invisible problem spots from the complex urbanized 
areas. Furthermore, mobile sensing is potentially applicable for public-marketing analysis. The distribution of a 
population at different points of time in each city space could be an ideal source to help people decide a place for 
urban advertising or opening a shop.  In addition, an exploration of mobile sensing data would give the urban 
planner a better understanding on flowing patterns of people at specific times of the day.  If we look at broader 
contexts,  then  population  transfers  from city  to  city  during  special  events  or  public  holidays  could  also  be 
determined.

 Study area
     The research takes place at Bangkok Metropolitan, Thailand. Bangkok city has a well developed mobile 
network and has a high degree of mobile usage. We received the support of the Erlang data and base station 
locations from Advanced Info Service PLC (AIS), a leading mobile operator in Thailand.
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II.SYSTEM ARCHITECTURE     
     In the early research,  the system was implemented  as a  fundamental  tool  for  spatial  exploration and 
visualization which permitted the data to be obtained, integrated and displayed quickly, easily and flexibly.  Since 
the internet has now made distance virtually disappear, we questioned the traditional method of urban monitoring 
by enhancing the way how to instantaneously integrate and obtain large amounts of data via the network.

Back end application servers
     To maximize compatibility and interoperability, open standards such as XML and web services are utilized 
for data exchange and sharing. Data analysis is assisted by the open source statistical package R (http://www.r-
project.org), integrated into the PostgreSQL database via the PL/R procedural language.

A browser front end 
     The web browser we use as a universal front end, an Ajax mashup, is a hybrid web application which 
presents a rich UI to update and integrate contents asynchronously from multiple sources. This makes combining 
data easier, not only spatial data from the host server but also third-party sources from the services available on 
the internet.   The calls  can also be made directly to the third-party sources from the browser  or  back to the 
originating server, which acts as a proxy for the third-party contents.

Fig. 1. System architecture of mobile sensing system

Data manipulation
     We first simulate a connection with a mobile operator in our local environment instead of communicating 
directly to the mobile-operator system. The mobile-log data during the period from February to April 2008 that 
cover a part of the central Bangkok area are transformed and inputted into a database.  The data established in the 
database mainly include cell-id, the base station geographic position, update time and Erlang data. The Erlang data 
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which is calculated from call duration are performed as a sample distribution in order to estimate the population 
density of the whole area.

cellid lat lon Start_time erl
BKKC1 13.75697 100.5594 2008/03/01 9:00 33.98
BKKC2 13.75697 100.5594 2008/03/01 9:00 18.93
BKKC3 13.75697 100.5594 2008/03/01 9:00 33.17
PTWA1 13.75138 100.5402 2008/03/01 9:00 20.75
PTWA2 13.75138 100.5402 2008/03/01 9:00 17.93
PTWA3 13.75138 100.5402 2008/03/01 9:00 33.07

Table 1. Sample data from the Base Station Controller (BSC)

Population and prediction model
     To present population data in a continuous space, we need interpolation techniques to generate a surface 
from discrete points. There are many interpolation techniques, each with its own weaknesses and strengths. In this 
paper,  we  introduce  an  inverse  distance  weighted  (IDW)  and ordinary  kriging  method  to  predict  population 
density in our prototype system. In order to increase the resolution of the interpolation results, we calculate the 
weight in each sector cells separately by using voronoi tessellation to increase a discrete set of points.

Fig. 2. Voronoi tessellation over sector base station

III.RESULTS AND DISCUSSIONS

     We start by presenting our first results on querying the cumulative usage of mobiles over an hour interval. 
Histogram and time series statistics can be retrieved from specific locations on a map and display in a time-plot 
based graph. The first two types of graphs, day and month, were produced by implementing a getStat webAPI in 
conjunction with Timeplot, a DHTML-based AJAX widget.  The exploration leads to a better understanding of 
each area's activities during one day, as well as the difference characteristics between weekdays and weekends.  In 
Figure 3(a),  we pick up an office  area  in  central  Bangkok,  and the  time plot  shows the trends  of  increasing 
activities from early morning up to the peak at noon, then decreasing gradually after 5.00 pm.  Figure 3(b) and (c) 
illustrate the overall  activity on a monthly basis.  We can capture a weekly rhythm of this  area which clearly 
defines high activities on the weekdays and appears to decrease on Saturday and Sunday. Figure 3(c) presents a 
pulse in April:  we can see a week of flat, low activities since it was a long holiday in Thailand.
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 (a)

    (b)

   (c)

Fig. 3. Day and month statistics from cumulative mobile usages data

Temporal analysis of human flow
     Another approach to explore the data is to generate a surface-flow pattern by interpolating the aggregate call 
traffic. Exploratory analysis of temporal data can give a clear view on how people flow into and out of the city 
throughout  the  day.  Figure  4  shows  the  flow  patterns  in  one  local  area  from 6.00  am until  8.00  pm.  This 
observation leads to the speculation on how one part of the central city is upscale, crowded and how long the area 
keeps busy until people move to another part of the city. It is extremely useful for the urban planner to figure out 
how type of land use, street network and other city landscapes could affect the flow and density of the urban area. 
Furthermore, results of the study not only provide a tool for area or zoning analysis but also could be used to 
specify hidden problems of the particular space over a period of time.  

Fig. 4. The flow pattern from early morning to late evening in central Bangkok

Hot spot capturing
     In order to clearly highlight the extreme values in distribution surfaces, we now generate the volume of 
population density with an overlay contour diagram using a specific color palate. In Figure 5, to illustrate how 
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mobile density could reflect the real world daily activities, we capture Pathumwan area. This is one of the most 
active spots  in  Bangkok that  has  a  mixed  land use,  for  example  high rise  office  buildings  and a large-scale 
shopping  complex.  If  we  compare  the  same  period  of  time  at  1.00  pm.  on  Friday  and  Sunday,  the  result 
demonstrates  that  on Friday the activities are dense at the office area and,  in contrast,  a  peak density moves 
towards  the shopping area  on Sunday.  Obviously enough, this  kind of hot  spot  extraction could be useful  to 
capture some hidden aspects in the urban space. We are planning to collect a longer span of archive data and make 
a base urban signature in order to implement a real-time signature recognition and hot spot extraction.

Fig. 5. Density contour in Pathumwan area on Friday and Sunday at 1.00 pm.
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